A325862 Number of integer partitions of n such that every set of distinct parts has a different sum.
1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 34, 46, 58, 77, 93, 122, 146, 188, 217, 282, 327, 410, 470, 596, 673, 848, 947, 1178, 1325, 1629, 1798, 2213, 2444, 2962, 3247, 3935, 4292, 5149, 5579, 6674, 7247, 8590, 9221, 10964, 11804, 13870, 14843, 17480, 18675, 21866
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 14 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (32) (33) (43) (111) (31) (41) (42) (52) (211) (221) (51) (61) (1111) (311) (222) (322) (2111) (411) (331) (11111) (2211) (421) (3111) (511) (21111) (2221) (111111) (4111) (22111) (31111) (211111) (1111111) The three non-knapsack partitions counted under a(6) are: (2,2,1,1) (3,1,1,1) (2,1,1,1,1)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Plus@@@Subsets[Union[#]]&]],{n,0,20}]
Comments