A325863 Number of integer partitions of n such that every distinct non-singleton submultiset has a different sum.
1, 1, 2, 3, 5, 6, 9, 11, 15, 17, 24, 29, 31, 41, 51, 58, 67, 84, 91, 117, 117
Offset: 0
Examples
The partition (2,1,1,1) has non-singleton submultisets {1,2} and {1,1,1} with the same sum, so (2,1,1,1) is not counted under a(5). The a(1) = 1 through a(8) = 15 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (211) (221) (51) (61) (62) (1111) (311) (222) (322) (71) (11111) (321) (331) (332) (411) (421) (422) (3111) (511) (431) (111111) (2221) (521) (4111) (611) (1111111) (2222) (3311) (5111) (41111) (11111111) The 10 non-knapsack partitions counted under a(12): (7,6,1) (7,5,2) (7,4,3) (7,5,1,1) (7,4,2,1) (7,3,3,1) (7,3,2,2) (7,4,1,1,1) (7,2,2,2,1) (7,1,1,1,1,1,1,1)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Plus@@@Union[Subsets[#,{2,Length[#]}]]&]],{n,0,15}]
Comments