A325865 Number of maximal subsets of {1..n} of which every subset has a different sum.
1, 1, 1, 3, 3, 6, 14, 23, 27, 40, 64, 104, 180, 275, 399, 554, 679, 872, 1117, 1431, 1920, 2520, 3530, 4751, 6644, 8855, 12021, 15461, 19939, 25109, 31656, 38750, 46204, 55650, 65942, 78045, 91304, 106592, 124761, 145701, 172343, 201217, 238739, 280601, 339746, 400394
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 14 subsets: {1} {1,2} {1,2} {1,3} {1,2,4} {1,2,4} {1,3} {1,2,4} {1,2,5} {1,2,5} {2,3} {2,3,4} {1,3,5} {1,2,6} {2,3,4} {1,3,5} {2,4,5} {1,3,6} {3,4,5} {1,4,6} {2,3,4} {2,3,6} {2,4,5} {2,5,6} {3,4,5} {3,4,6} {3,5,6} {4,5,6}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..60
Crossrefs
Programs
-
Mathematica
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&)/@y]; Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Plus@@@Subsets[#]&]]],{n,0,10}]
-
PARI
a(n)={ my(ismaxl(w)=for(k=1, n, if(!bitand(w,w<
n, ismaxl(w), my(s=self()(k+1, b,w)); if(!bitand(w,w< Andrew Howroyd, Mar 23 2025
Extensions
a(18) onwards from Andrew Howroyd, Mar 23 2025