cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325867 Number of maximal subsets of {1..n} containing n such that every subset has a different sum.

Original entry on oeis.org

1, 1, 2, 2, 4, 8, 10, 12, 17, 34, 45, 77, 99, 136, 166, 200, 238, 328, 402, 660, 674, 1166, 1331, 1966, 2335, 3286, 3527, 4762, 5383, 6900, 7543, 9087, 10149, 12239, 13569, 16452, 17867, 22869, 23977, 33881, 33820, 43423, 48090, 68683, 67347, 95176, 97917, 131666, 136205
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2019

Keywords

Comments

These are maximal strict knapsack partitions (A275972, A326015) organized by maximum rather than sum.

Examples

			The a(1) = 1 through a(8) = 12 subsets:
  {1}  {1,2}  {1,3}  {1,2,4}  {1,2,5}  {1,2,6}  {1,2,7}    {1,3,8}
              {2,3}  {2,3,4}  {1,3,5}  {1,3,6}  {1,3,7}    {1,5,8}
                              {2,4,5}  {1,4,6}  {1,4,7}    {5,7,8}
                              {3,4,5}  {2,3,6}  {1,5,7}    {1,2,4,8}
                                       {2,5,6}  {2,3,7}    {1,4,6,8}
                                       {3,4,6}  {2,4,7}    {2,3,4,8}
                                       {3,5,6}  {2,6,7}    {2,4,5,8}
                                       {4,5,6}  {4,5,7}    {2,4,7,8}
                                                {4,6,7}    {3,4,6,8}
                                                {3,5,6,7}  {3,6,7,8}
                                                           {4,5,6,8}
                                                           {4,6,7,8}
		

Crossrefs

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&)/@y];
    Table[Length[fasmax[Select[Subsets[Range[n]],MemberQ[#,n]&&UnsameQ@@Plus@@@Subsets[#]&]]],{n,15}]
  • Python
    def f(p0, n, m, cm):
        full, t, p = True, 0, p0
        while p>k)&1)==0 and ((m<Bert Dobbelaere, Mar 07 2021

Extensions

More terms from Bert Dobbelaere, Mar 07 2021