A325870 Primes represented by non-quadratic cyclotomic binary forms.
11, 13, 17, 31, 43, 61, 73, 97, 127, 151, 181, 193, 211, 241, 257, 331, 337, 421, 461, 463, 521, 541, 547, 577, 601, 641, 683, 757, 881, 991, 1009, 1021, 1031, 1093, 1297, 1621, 1801, 1871, 1873, 1933, 2221, 2417, 2657, 2731, 2801, 3001, 3121, 3361, 3571, 3697
Offset: 1
Keywords
Links
- Peter Luschny, Table of n, a(n) for n = 1..185
- Étienne Fouvry, Claude Levesque, and Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017 and Acta Arithmetica, online 15 March 2018.
Programs
-
PARI
isA325870(n) = { my(K, M, phi); K = floor(5.383*log(n)^1.161); M = floor(2*sqrt(n/3)); for(k = 3, K, phi = eulerphi(k); if(phi >= 4, for(y = 1, M, for(x = y + 1, M, if(n == y^phi*polcyclo(k, x/y), return(1) ))))); return(0) }
Extensions
At the suggestion of Michel Waldschmidt