A325878 Number of maximal subsets of {1..n} such that every orderless pair of distinct elements has a different sum.
1, 1, 1, 1, 4, 5, 8, 22, 40, 56, 78, 124, 222, 390, 616, 892, 1220, 1620, 2182, 3042, 4392, 6364, 9054, 12608, 16980, 22244, 28482, 36208, 45864, 58692, 75804, 98440, 128694, 168250, 218558, 281210, 357594, 449402, 560034, 693332, 853546, 1050118, 1293458, 1596144, 1975394
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 8 subsets: {1} {1,2} {1,2,3} {1,2,3} {1,2,4} {1,2,3,5} {1,2,4} {2,3,4} {1,2,3,6} {1,3,4} {2,4,5} {1,2,4,6} {2,3,4} {1,2,3,5} {1,3,4,5} {1,3,4,5} {1,3,5,6} {1,4,5,6} {2,3,4,6} {2,4,5,6}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..60
Crossrefs
Programs
-
Mathematica
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Plus@@@Subsets[Union[#],{2}]&]]],{n,0,10}]
-
PARI
a(n)={ my(ismaxl(b,w)=for(k=1, n, if(!bittest(b,k) && !bitand(w,b<
n, ismaxl(b,w), my(s=self()(k+1, r, b, w)); if(!bitand(w,b< Andrew Howroyd, Mar 23 2025
Extensions
a(21) onwards from Andrew Howroyd, Mar 23 2025