A325888 Number of colored set partitions of [n] where colors of the elements of subsets are in (weakly) increasing order and all colors of an initial interval of the color palette are used.
1, 1, 5, 41, 505, 8597, 191457, 5364837, 183744421, 7521913845, 361544182917, 20109571623693, 1278810836639233, 92032189911692253, 7430335604308535497, 667922294225164998677, 66407623510409091454229, 7260203111052685954056549, 868289612454444952122790277
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..296
Crossrefs
Row sums of A321296.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)* binomial(n-1, j-1)*binomial(k+j-1, j), j=1..n)) end: a:= n-> add(add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n): seq(a(n), n=0..21);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k + j - 1, j], {j, 1, n}]]; a[n_] := Sum[Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}], {k, 0, n}]; a /@ Range[0, 21] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)