A325890 Number of colored set partitions of [n] where colors of the elements of subsets are in (weakly) increasing order and exactly two colors are used.
3, 20, 122, 774, 5247, 38198, 298139, 2485690, 22045130, 207125874, 2053771931, 21416863948, 234145149539, 2676207794512, 31898152797430, 395584489687982, 5093960430643323, 67985187315217290, 938835976835478467, 13394336734762313862, 197153821757472332126
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..535
Crossrefs
Column k=2 of A321296.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)* binomial(n-1, j-1)*binomial(k+j-1, j), j=1..n)) end: a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2): seq(a(n), n=2..25);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k + j - 1, j], {j, 1, n}]]; a[n_] := With[{k = 2}, Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]]; a /@ Range[2, 25] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)