cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325904 Generator sequence for A100982.

Original entry on oeis.org

1, 0, -3, -8, 15, -91, -54, 2531, -17021, 43035, -66258, 1958757, -24572453, 146991979, -287482322, -3148566077, 35506973089, -198639977241, 1006345648929, -8250266425561, 76832268802555, -517564939540551, 1890772860334557, 3323588929061820, -104547561696315008, 907385094824827328, -6313246535826877248
Offset: 0

Views

Author

Benjamin Lombardo, Sep 08 2019

Keywords

Comments

The name of this sequence is derived from its main purpose as a formula for A100982 (see link). Both formulas below stem from Mike Winkler's 2017 paper on the 3x+1 problem (see below), in which a recursive definition of A100982 and A076227 is created in 2-D space. These formulas redefine the sequences in terms of this 1-D recursive sequence.

Crossrefs

Programs

  • Python
    import math
    numberOfTerms = 20
    L6 = [1,0]
    def c(n):
        return math.floor(n/(math.log2(3)-1))
    def p(a,b):
        return math.factorial(a)/(math.factorial(a-b)*math.factorial(b))
    def anotherTerm(newTermCount):
        global L6
        for a in range(newTermCount+1-len(L6)):
            y = len(L6)
            newElement = 0
            for k in range(y):
                newElement -= int(L6[k]*p(c(y)+y-k-2, c(y)-2))
            L6.append(newElement)
    anotherTerm(numberOfTerms)
    print("A325904")
    for a in range(numberOfTerms+1):
        print(a, "|", L6[a])
    
  • SageMath
    @cached_function
    def a(n):
        if n < 2: return 0^n
        A = floor(n/(log(3, 2) - 1)) - 2
        return -sum(a(k)*binomial(A + n - k, A) for k in (0..n-1))
    [a(n) for n in range(100)] # Peter Luschny, Sep 10 2019

Formula

a(0)=1, a(1)=0, a(n) = -Sum_{k=0..n-1} a(k)*binomial(A325913(n)+n-k-2, A325913(n)-2) for n>1.