A325493
a(n) = Sum_{k=1..n} A325910(k) * 10^(2^(k-1)).
Original entry on oeis.org
0, 10, 1010, 11011010, 1111001011011010, 11111111000011011111001011011010, 1111111111111111000000001111001011111111000011011111001011011010
Offset: 0
-
{a(n) = sum(i=1, n, 10^2^(i-1)*((-1)^(i-1)*sum(j=0, i-1, (-1)^j*10^2^j)-(1-(-1)^i)/2)/9)}
A309597
a(n) is the A325907(n)-th triangular number.
Original entry on oeis.org
6, 666, 5656566, 555665666566566, 5555555666655656666556566566566, 555555555555555666666665555665666666666555566566666556566566566
Offset: 1
a(1) = 6 = 6 + 0 + 0 * 10^1.
a(2) = 666 = 556 + 10 + 1 * 10^2.
a(3) = 5656566 = 5555556 + 1010 + 10 * 10^4.
a(4) = 555665666566566 = 555555555555556 + 11011010 + 1101 * 10^8.
------------------------------------------------------------------
a(2) = 6 6 6. ( 3 6's)
- -
a(3) = 5 65 65 66. ( 3 5's and 4 6's)
- -- --
a(4) = 555 6656 6656 6566. ( 6 5's and 9 6's)
--- ---- ----
a(5) = 5555555 66665565 66665565 66566566. (15 5's and 16 6's)
------- -------- --------
A325906
a(n) = ( (-1)^n * Sum_{k=0..n-2} (-1)^k*10^(2^k) + 10^(2^(n-1)) - ((-1)^n+3)/2 )/9.
Original entry on oeis.org
1, 12, 1121, 11112212, 1111111122221121, 11111111111111112222222211112212, 1111111111111111111111111111111122222222222222221111111122221121
Offset: 1
n | a(n) | A325910(n)
--+------------------+-----------------
1 | 1 | 1
2 | 12 | 10
3 | 1121 | 1101
4 | 11112212 | 11110010
5 | 1111111122221121 | 1111111100001101
-
a[n_] := ((-1)^n * Sum[(-1)^k * 10^(2^k), {k, 0, n - 2}] + 10^(2^(n - 1)) - ((-1)^n + 3)/2)/9; Array[a, 7] (* Amiram Eldar, May 07 2021 *)
-
{a(n) = ((-1)^n*sum(k=0, n-2, (-1)^k*10^2^k)+10^2^(n-1)-((-1)^n+3)/2)/9}
A325912
a(n) = (-1)^n * Sum_{k=0..n} (-1)^k*2^(2^k).
Original entry on oeis.org
2, 2, 14, 242, 65294, 4294902002, 18446744069414649614, 340282366920938463444927863362353561842, 115792089237316195423570985008687907852929702298719625576012656144550776078094
Offset: 0
a(0) = 2^1 = 2.
a(1) = 2^2 - 2^1 = 2.
a(2) = 2^4 - 2^2 + 2^1 = 14.
a(3) = 2^8 - 2^4 + 2^2 - 2^1 = 242.
a(4) = 2^16 - 2^8 + 2^4 - 2^2 + 2^1 = 65294.
-
a[n_] := (-1)^n * Sum[(-1)^k * 2^(2^k), {k, 0, n}]; Array[a, 9, 0] (* Amiram Eldar, May 07 2021 *)
-
{a(n) = (-1)^n*sum(k=0,n,(-1)^k*2^2^k)}
A327266
Product of A325907(n) and its 9's complement.
Original entry on oeis.org
18, 2268, 22316868, 2222332266866868, 22222222333322316666886866866868, 2222222222222222333333332222332266666666888866866666886866866868
Offset: 1
a(1) = 3 * 6 = 18.
a(2) = 63 * 36 = 2268.
a(3) = 3363 * 6636 = 22316868.
a(4) = 66663363 * 33336636 = 2222332266866868.
-----------------------------------------------
a(1) = 18 = 18 - 2 * 0 + 0 * 10^1.
a(2) = 2268 = 2188 - 2 * 10 + 1 * 10^2.
a(3) = 22316868 = 22218888 - 2 * 1010 + 10 * 10^4.
a(4) = 2222332266866868 = 2222222188888888 - 2 * 11011010 + 1101 * 10^8.
Original entry on oeis.org
28, 2368, 22326868, 2222332366866868, 22222222333322326666886866866868, 2222222222222222333333332222332366666666888866866666886866866868
Offset: 1
a(1) = 2 * 10^1 + 8.
a(2) = 23 * 10^2 + 68.
a(3) = 2232 * 10^4 + 6868.
a(4) = 22223323 * 10^8 + 66866868.
a(5) = 2222222233332232 * 10^16 + 6666886866866868.
And
2 = 2 * (10^1 - 1)/9 + 0.
23 = 2 * (10^2 - 1)/9 + 1.
2232 = 2 * (10^4 - 1)/9 + 10.
22223323 = 2 * (10^8 - 1)/9 + 1101.
2222222233332232 = 2 * (10^16 - 1)/9 + 11110010.
And
8 = 8 * (10^1 - 1)/9 - 2 * 0.
68 = 8 * (10^2 - 1)/9 - 2 * 10.
6868 = 8 * (10^4 - 1)/9 - 2 * 1010.
66866868 = 8 * (10^8 - 1)/9 - 2 * 11011010.
6666886866866868 = 8 * (10^16 - 1)/9 - 2 * 1111001011011010.
Showing 1-6 of 6 results.
Comments