A325912 a(n) = (-1)^n * Sum_{k=0..n} (-1)^k*2^(2^k).
2, 2, 14, 242, 65294, 4294902002, 18446744069414649614, 340282366920938463444927863362353561842, 115792089237316195423570985008687907852929702298719625576012656144550776078094
Offset: 0
Keywords
Examples
a(0) = 2^1 = 2. a(1) = 2^2 - 2^1 = 2. a(2) = 2^4 - 2^2 + 2^1 = 14. a(3) = 2^8 - 2^4 + 2^2 - 2^1 = 242. a(4) = 2^16 - 2^8 + 2^4 - 2^2 + 2^1 = 65294.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..11
- Sylvia Wenmackers, On the Limits of Comparing Subset Sizes within N, J. Phil. Math. (2024) Vol. 1, 223-251. See p. 229.
Programs
-
Mathematica
a[n_] := (-1)^n * Sum[(-1)^k * 2^(2^k), {k, 0, n}]; Array[a, 9, 0] (* Amiram Eldar, May 07 2021 *)
-
PARI
{a(n) = (-1)^n*sum(k=0,n,(-1)^k*2^2^k)}
Formula
a(n) = A001146(n) - a(n-1).