cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325916 Number of partitions of n into colored blocks of equal parts with colors from a set of size n such that the block with largest parts has the first color.

Original entry on oeis.org

1, 1, 2, 5, 11, 27, 76, 177, 428, 966, 2724, 5986, 14322, 31241, 68632, 174364, 374901, 841417, 1792950, 3803764, 7688426, 18376432, 37158444, 80078021, 163155272, 335521478, 658661436, 1298215354, 2820956914, 5523327097, 11240000648, 22117134452, 43666070406
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2019

Keywords

Examples

			a(3) = 5: 3a, 2a1a, 2a1b, 2a1c, 111a.
		

Crossrefs

Cf. A321880.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, k*add(
          (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i) +b(n, i-1, k)))
        end:
    a:= n-> `if`(n=0, 1, b(n$3)/n):
    seq(a(n), n=0..34);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, k Sum[With[{t = n - i j},  b[t, Min[t, i - 1], k]], {j, 1, n/i}] + b[n, i - 1, k]]];
    a[n_] := If[n == 0, 1, b[n, n, n]/n];
    a /@ Range[0, 34] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)

Formula

a(n) = 1/n * [x^n] Product_{j=1..n} (1+(n-1)*x^j)/(1-x^j) for n>0, a(0)=1.
a(n) = A321880(n)/n for n > 0, a(0) = 1.