A325916 Number of partitions of n into colored blocks of equal parts with colors from a set of size n such that the block with largest parts has the first color.
1, 1, 2, 5, 11, 27, 76, 177, 428, 966, 2724, 5986, 14322, 31241, 68632, 174364, 374901, 841417, 1792950, 3803764, 7688426, 18376432, 37158444, 80078021, 163155272, 335521478, 658661436, 1298215354, 2820956914, 5523327097, 11240000648, 22117134452, 43666070406
Offset: 0
Keywords
Examples
a(3) = 5: 3a, 2a1a, 2a1b, 2a1c, 111a.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1650
Crossrefs
Cf. A321880.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, k*add( (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i) +b(n, i-1, k))) end: a:= n-> `if`(n=0, 1, b(n$3)/n): seq(a(n), n=0..34);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, k Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] + b[n, i - 1, k]]]; a[n_] := If[n == 0, 1, b[n, n, n]/n]; a /@ Range[0, 34] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
Formula
a(n) = 1/n * [x^n] Product_{j=1..n} (1+(n-1)*x^j)/(1-x^j) for n>0, a(0)=1.
a(n) = A321880(n)/n for n > 0, a(0) = 1.