cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325929 Total number of sub-subsets of set partitions of [n] where each subset is again partitioned into nonempty subsets.

Original entry on oeis.org

0, 1, 4, 14, 57, 262, 1326, 7499, 47662, 334794, 2555639, 21124116, 189492474, 1838561337, 19094196270, 210014919406, 2433655645025, 29707254349866, 382324345380310, 5179102279125987, 73515985821539778, 1087888385861343158, 16724494503770495231
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2019

Keywords

Crossrefs

Cf. A324162.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0 or k>n, 0,
          add(b(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
        end:
    a:= n-> add(b(n, k)*k, k=0..n):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0 || k > n, 0, Sum[b[n - j, k] Binomial[n - 1, j - 1] StirlingS2[j, k], {j, k, n}]]];
    a[n_] := Sum[b[n, k] k, {k, 0, n}];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A324162(n,k).