A325929 Total number of sub-subsets of set partitions of [n] where each subset is again partitioned into nonempty subsets.
0, 1, 4, 14, 57, 262, 1326, 7499, 47662, 334794, 2555639, 21124116, 189492474, 1838561337, 19094196270, 210014919406, 2433655645025, 29707254349866, 382324345380310, 5179102279125987, 73515985821539778, 1087888385861343158, 16724494503770495231
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Crossrefs
Cf. A324162.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0 or k>n, 0, add(b(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n))) end: a:= n-> add(b(n, k)*k, k=0..n): seq(a(n), n=0..23);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0 || k > n, 0, Sum[b[n - j, k] Binomial[n - 1, j - 1] StirlingS2[j, k], {j, k, n}]]]; a[n_] := Sum[b[n, k] k, {k, 0, n}]; a /@ Range[0, 23] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=1..n} k * A324162(n,k).