A325930 Total number of colors used in all colored set partitions of [n] where colors of the elements of subsets are distinct and in increasing order and the colors span an initial interval of the color palette.
0, 1, 7, 73, 1075, 21066, 527122, 16313963, 609352653, 26938878757, 1387465470527, 82169954359252, 5534425340505464, 419977314311140561, 35617039966665620743, 3352008343756176938273, 347915661537105210844323, 39607489635223003610928042
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..296
Crossrefs
Cf. A322670.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)* binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n))) end: a:= n-> add(k*add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n): seq(a(n), n=0..18);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k, j], {j, 1, Min[k, n]}]]; a[n_] := Sum[k Sum[b[n, k-i] (-1)^i Binomial[k, i], {i, 0, k}], {k, 0, n}]; a /@ Range[0, 18] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=1..n} k * A322670(n,k).