A325958 Sum of the corners of a 2n+1 X 2n+1 square spiral.
24, 76, 160, 276, 424, 604, 816, 1060, 1336, 1644, 1984, 2356, 2760, 3196, 3664, 4164, 4696, 5260, 5856, 6484, 7144, 7836, 8560, 9316, 10104, 10924, 11776, 12660, 13576, 14524, 15504, 16516, 17560, 18636, 19744, 20884, 22056, 23260, 24496, 25764, 27064, 28396
Offset: 1
Examples
For n=1 (our first value) namely for a 3 X 3 spiral, we get a(1) = 24. For n=2, for a 5 X 5 spiral, we get a(2) = 76.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Minh Nguyen, 2-adic Valuations of Square Spiral Sequences, Honors Thesis, Univ. of Southern Mississippi (2021).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A114254.
Programs
-
Mathematica
Table[ 16n^2+4n+4, {n, 42}] (* Metin Sariyar, Sep 14 2019 *)
-
PARI
a(n) = 16*n^2 + 4*n + 4;
-
PARI
Vec(4*x*(6 + x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Sep 10 2019
Formula
a(n) = 16*n^2 + 4*n + 4.
From Colin Barker, Sep 10 2019: (Start)
G.f.: 4*x*(6 + x + x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)
E.g.f.: -4 + 4*exp(x)*(1 + 5*x + 4*x^2). - Stefano Spezia, Sep 11 2019
Comments