A325991 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different sum.
210, 420, 462, 630, 840, 858, 910, 924, 1050, 1155, 1260, 1326, 1386, 1470, 1680, 1716, 1820, 1848, 1870, 1890, 1938, 2100, 2145, 2310, 2470, 2520, 2574, 2622, 2652, 2730, 2772, 2926, 2940, 3150, 3234, 3315, 3360, 3432, 3465, 3570, 3640, 3696, 3740, 3780, 3876
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 210: {1,2,3,4} 420: {1,1,2,3,4} 462: {1,2,4,5} 630: {1,2,2,3,4} 840: {1,1,1,2,3,4} 858: {1,2,5,6} 910: {1,3,4,6} 924: {1,1,2,4,5} 1050: {1,2,3,3,4} 1155: {2,3,4,5} 1260: {1,1,2,2,3,4} 1326: {1,2,6,7} 1386: {1,2,2,4,5} 1470: {1,2,3,4,4} 1680: {1,1,1,1,2,3,4} 1716: {1,1,2,5,6} 1820: {1,1,3,4,6} 1848: {1,1,1,2,4,5} 1870: {1,3,5,7} 1890: {1,2,2,2,3,4}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],!UnsameQ@@Plus@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]
Comments