A326015 Number of strict knapsack partitions of n such that no superset with the same maximum is knapsack.
1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 4, 4, 5, 3, 3, 4, 6, 2, 7, 6, 13, 9, 19, 16, 27, 21, 40, 33, 47, 37, 54, 48, 66, 51, 65, 65, 77, 64, 80, 71, 96, 60, 106, 95, 112, 93, 152, 114, 191, 131, 242, 192, 303, 210, 366, 300, 482, 352, 581, 450, 713, 539, 882, 689, 995
Offset: 1
Keywords
Examples
The a(1) = 1 through a(17) = 6 strict knapsack partitions (empty columns not shown): {1} {2,1} {3,1} {3,2} {4,2,1} {5,2,1} {4,3,2} {6,3,1} {5,4,2} {5,3,1} {7,2,1} {6,3,2} {6,2,1} {6,4,1} {7,3,1} . {5,4,3} {6,4,3} {6,5,3} {6,5,4} {7,5,4} {7,6,4} {7,3,2} {6,5,2} {8,5,1} {7,6,2} {9,4,3} {9,5,3} {7,4,1} {7,4,2} {9,3,2} {8,4,2,1} {9,6,1} {9,6,2} {8,3,1} {7,5,1} {9,4,2,1} {8,4,3,2} {9,3,1} {9,5,2,1} {10,4,2,1}
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..600
Crossrefs
Programs
-
Mathematica
ksQ[y_]:=UnsameQ@@Total/@Union[Subsets[y]] maxsks[n_]:=Select[Select[IntegerPartitions[n],UnsameQ@@#&&ksQ[#]&],Select[Table[Append[#,i],{i,Complement[Range[Max@@#],#]}],ksQ]=={}&]; Table[Length[maxsks[n]],{n,30}]
Comments