cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326022 Number of minimal complete subsets of {1..n} with maximum n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 4, 8, 8, 8, 10, 14, 25, 40, 49, 62
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2019

Keywords

Comments

A set of positive integers summing to m is complete if every nonnegative integer up to m is the sum of some subset. For example, (1,2,3,6,13) is a complete set because we have:
0 = (empty sum)
1 = 1
2 = 2
3 = 3
4 = 1 + 3
5 = 2 + 3
6 = 6
7 = 6 + 1
8 = 6 + 2
9 = 6 + 3
10 = 1 + 3 + 6
11 = 2 + 3 + 6
12 = 1 + 2 + 3 + 6
and the remaining numbers 13-25 are obtained by adding 13 to each of these.

Examples

			The a(3) = 1 through a(9) = 8 subsets:
  {1,2,3}  {1,2,4}  {1,2,3,5}  {1,2,3,6}  {1,2,3,7}  {1,2,4,8}    {1,2,3,4,9}
                    {1,2,4,5}  {1,2,4,6}  {1,2,4,7}  {1,2,3,5,8}  {1,2,3,5,9}
                                                     {1,2,3,6,8}  {1,2,3,6,9}
                                                     {1,2,3,7,8}  {1,2,3,7,9}
                                                                  {1,2,4,5,9}
                                                                  {1,2,4,6,9}
                                                                  {1,2,4,7,9}
                                                                  {1,2,4,8,9}
		

Crossrefs

Programs

  • Mathematica
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]&/@Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length[fasmin[Select[Subsets[Range[n]],Max@@#==n&&Union[Plus@@@Subsets[#]]==Range[0,Total[#]]&]]],{n,10}]