A326023 Number of subsets of {1..n} containing all of their integer quotients.
1, 2, 3, 5, 9, 17, 25, 49, 73, 145, 217, 433, 553, 1105, 1657, 2593, 3937, 7873, 10057, 20113, 26689, 42321, 63481, 126961, 154801, 309601, 464401, 737569, 992161, 1984321, 2450881, 4901761, 6292801, 10197313, 15295969, 26241697, 32947489, 65894977, 98842465, 161587873, 205842529
Offset: 0
Keywords
Examples
The a(0) = 1 through a(5) = 17 subsets: {} {} {} {} {} {} {1} {1} {1} {1} {1} {1,2} {1,2} {1,2} {1,2} {1,3} {1,3} {1,3} {1,2,3} {1,4} {1,4} {1,2,3} {1,5} {1,2,4} {1,2,3} {1,3,4} {1,2,4} {1,2,3,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {1,2,3,4,5}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Divide@@@Tuples[#,2],IntegerQ]]&]],{n,0,10}]
Formula
For n > 0, a(n) = A326078(n) + 1.
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 30 2019
Comments