A326026 Number of non-isomorphic multiset partitions of weight n where each part has a different length.
1, 1, 2, 7, 12, 35, 111, 247, 624, 1843, 6717, 15020, 46847, 124808, 412577, 1658973, 4217546, 12997734, 40786810, 126971940, 437063393, 2106317043, 5499108365, 19037901867, 59939925812, 210338815573, 683526043801, 2741350650705, 14848209030691, 41533835240731, 151548411269815
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions: {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,2}} {{1,2,2}} {{1,1,2,2}} {{1,2,3}} {{1,2,2,2}} {{1},{1,1}} {{1,2,3,3}} {{1},{2,2}} {{1,2,3,4}} {{1},{2,3}} {{1},{1,1,1}} {{2},{1,2}} {{1},{1,2,2}} {{1},{2,2,2}} {{1},{2,3,3}} {{1},{2,3,4}} {{2},{1,2,2}} {{3},{1,2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} D(p,n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); polcoef(prod(k=1, #u, 1 + u[k]*x^k + O(x*x^n)), n)/prod(i=1, #v, i^v[i]*v[i]!)} a(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Feb 08 2020
Extensions
Terms a(11) and beyond from Andrew Howroyd, Feb 08 2020
Comments