cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326026 Number of non-isomorphic multiset partitions of weight n where each part has a different length.

Original entry on oeis.org

1, 1, 2, 7, 12, 35, 111, 247, 624, 1843, 6717, 15020, 46847, 124808, 412577, 1658973, 4217546, 12997734, 40786810, 126971940, 437063393, 2106317043, 5499108365, 19037901867, 59939925812, 210338815573, 683526043801, 2741350650705, 14848209030691, 41533835240731, 151548411269815
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

The number of non-isomorphic multiset partitions of weight n is A007716(n).

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions:
  {{1}}  {{1,1}}  {{1,1,1}}    {{1,1,1,1}}
         {{1,2}}  {{1,2,2}}    {{1,1,2,2}}
                  {{1,2,3}}    {{1,2,2,2}}
                  {{1},{1,1}}  {{1,2,3,3}}
                  {{1},{2,2}}  {{1,2,3,4}}
                  {{1},{2,3}}  {{1},{1,1,1}}
                  {{2},{1,2}}  {{1},{1,2,2}}
                               {{1},{2,2,2}}
                               {{1},{2,3,3}}
                               {{1},{2,3,4}}
                               {{2},{1,2,2}}
                               {{3},{1,2,3}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    D(p,n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); polcoef(prod(k=1, #u, 1 + u[k]*x^k + O(x*x^n)), n)/prod(i=1, #v, i^v[i]*v[i]!)}
    a(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Feb 08 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Feb 08 2020