A326035 Number of uniform knapsack partitions of n.
1, 1, 2, 3, 4, 4, 6, 6, 9, 10, 12, 12, 17, 16, 20, 25, 27, 29, 35, 39, 44, 57, 53, 66, 75, 84, 84, 114, 112, 131, 133, 162, 167, 209, 192, 242, 250, 289, 279, 363, 348, 417, 404, 502, 487, 608, 557, 706, 682, 835, 773, 1004, 922, 1149, 1059, 1344, 1257, 1595
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 9 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (1111) (11111) (51) (61) (62) (222) (421) (71) (111111) (1111111) (521) (2222) (3311) (11111111)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..650
Crossrefs
Programs
-
Mathematica
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])]; ks[n_]:=Select[IntegerPartitions[n],Length[sums[Sort[#]]]==Times@@(Length/@Split[#]+1)-1&]; Table[Length[Select[ks[n],SameQ@@Length/@Split[#]&]],{n,30}]
Comments