A326036 Number of uniform complete integer partitions of n.
1, 1, 1, 2, 1, 1, 3, 2, 2, 2, 2, 2, 6, 3, 3, 5, 5, 3, 8, 5, 11, 10, 10, 9, 19, 13, 15, 17, 21, 18, 35, 26, 39, 40, 50, 50, 77, 63, 84, 88, 113, 103, 146, 132, 171, 180, 212, 214, 292, 276, 345, 363, 435, 442, 561, 569, 694, 729, 853, 891, 1108
Offset: 0
Keywords
Examples
The initial terms count the following partitions: 0: () 1: (1) 2: (11) 3: (21) 3: (111) 4: (1111) 5: (11111) 6: (321) 6: (2211) 6: (111111) 7: (421) 7: (1111111) 8: (3311) 8: (11111111) 9: (222111) 9: (111111111) 10: (4321) 10: (1111111111) 11: (5321) 11: (11111111111)
Crossrefs
Programs
-
Mathematica
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])]; Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#]&&Sort[sums[Sort[#]]]==Range[Total[#]]&]],{n,0,30}]
Comments