cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A326137 Numbers with at least five distinct prime factors that satisfy Euler's criterion (A228058) for odd perfect numbers.

Original entry on oeis.org

17342325, 22678425, 31674825, 38686725, 41420925, 45090045, 49358925, 51740325, 54033525, 54695025, 67660425, 68939325, 70703325, 75818925, 76392225, 77106645, 78217425, 81375525, 92400525, 96316605, 97383825, 98750925, 99147825, 102284325, 107694405, 113656725, 115420725, 117890325, 118728225, 120536325, 127766925
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2019

Keywords

Comments

P. P. Nielsen's 2006 paper shows that any odd perfect number must have at least nine distinct prime factors, thus if such numbers exist at all, they must occur in this sequence.
I conjecture that it is eventually possible to find an easy proof that this sequence has no common terms with A325981, and/or several other sequences (A326064, A326074, A326141, A326148, etc.) listed under index entry "sequences where odd perfect numbers must occur", thus settling the question about the existence of such numbers.

Crossrefs

Programs

  • PARI
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    isA326137(n) = ((omega(n)>=5)&&isA228058(n));

A326148 Odd numbers > 1, not powers of primes, for which A326147(n) is equal to abs(A326146(n)).

Original entry on oeis.org

15, 91, 207, 703, 847, 1023, 1891, 2701, 2725, 5551, 12403, 15043, 18721, 19359, 38503, 49141, 79003, 88831, 104653, 146611, 148951, 188191, 218791, 226801, 269011, 286903, 346957, 385003, 497503, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1207359, 1314631, 1345873, 1373653, 1537381, 1755001
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Comments

Odd numbers > 1, not powers of primes, for which A326146(n) [= (sigma(n)-A020639(n)-n)] is not zero and divides n-A020639(n).
Question: Are any of these terms present also in A326064 and A326074? None of the first 519 terms are. If such intersections are empty, then there are no odd perfect numbers.
Of the first 519 terms, 485 are semiprimes.

Crossrefs

Programs

  • PARI
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A326146(n) = (sigma(n)-A020639(n)-n);
    A326147(n) = gcd(n-A020639(n), sigma(n)-A020639(n)-n);
    isA326148(n) = if((n>1)&&(n%2)&&!isprimepower(n), my(s=factor(n)[1, 1], t=n-s, u=sigma(n)-s-n); (u && !(t%u)), 0);

A326146 a(n) = sigma(n) - A020639(n) - n, where A020639 gives the smallest prime factor of n, and sigma is the sum of divisors of n.

Original entry on oeis.org

-1, -1, -2, 1, -4, 4, -6, 5, 1, 6, -10, 14, -12, 8, 6, 13, -16, 19, -18, 20, 8, 12, -22, 34, 1, 14, 10, 26, -28, 40, -30, 29, 12, 18, 8, 53, -36, 20, 14, 48, -40, 52, -42, 38, 30, 24, -46, 74, 1, 41, 18, 44, -52, 64, 12, 62, 20, 30, -58, 106, -60, 32, 38, 61, 14, 76, -66, 56, 24, 72, -70, 121, -72, 38, 46, 62, 12, 88
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000203(n) - A020639(n) - n = A000203(n) - A061228(n).
a(n) = A001065(n) - A020639(n).
For n > 1, a(n) = A105086(n) - n.

A326073 a(n) = gcd(1+n-A020639(n), 1+sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n (and 1 for 1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 7, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(1+n-A020639(n), 1+A000203(n)-A020639(n)-n).
Showing 1-4 of 4 results.