A326077 Number of maximal primitive subsets of {1..n}.
1, 1, 2, 2, 3, 3, 4, 4, 6, 7, 11, 11, 13, 13, 23, 24, 36, 36, 48, 48, 64, 66, 126, 126, 150, 151, 295, 363, 507, 507, 595, 595, 895, 903, 1787, 1788, 2076, 2076, 4132, 4148, 5396, 5396, 6644, 6644, 9740, 11172, 22300, 22300, 26140, 26141, 40733, 40773, 60333, 60333, 80781, 80783
Offset: 0
Keywords
Examples
The a(0) = 1 through a(9) = 7 sets: {} {1} {1} {1} {1} {1} {1} {1} {1} {1} {2} {23} {23} {235} {235} {2357} {2357} {2357} {34} {345} {345} {3457} {3457} {2579} {456} {4567} {3578} {3457} {4567} {3578} {5678} {45679} {56789}
Links
- Nathan McNew, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Mathematica
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}]; fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]],stableQ[#,Divisible]&]]],{n,0,10}]
-
PARI
divset(n)={sumdiv(n, d, if(d
if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1< Andrew Howroyd, Aug 30 2019
Extensions
Terms a(19) to a(55) from Andrew Howroyd, Aug 30 2019
Name edited by Nathan McNew, Aug 10 2020
Comments