A326092 E.g.f.: Sum_{n>=0} ((1+x)^n + 2)^n * x^n/n!.
1, 3, 11, 63, 525, 5883, 84519, 1494783, 31854489, 800205075, 23315862339, 777867156927, 29384670476709, 1245177345486987, 58718905551858015, 3060140159517853887, 175176443950054714161, 10955959246057628397987, 745058168844977314910331, 54857350105041217492956735, 4356213264604432880789346621
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 3*x + 11*x^2/2! + 63*x^3/3! + 525*x^4/4! + 5883*x^5/5! + 84519*x^6/6! + 1494783*x^7/7! + 31854489*x^8/8! + 800205075*x^9/9! + 23315862339*x^10/10! + ... such that A(x) = 1 + ((1+x) + 2)*x + ((1+x)^2 + 2)^2*x^2/2! + ((1+x)^3 + 2)^3*x^3/3! + ((1+x)^4 + 2)^4*x^4/4! + ((1+x)^5 + 2)^5*x^5/5! + ((1+x)^6 + 2)^6*x^6/6! + ((1+x)^7 + 2)^7*x^7/7! + ... also A(x) = 1 + (1+x)*exp(2*x*(1+x))*x + (1+x)^4*exp(2*x*(1+x)^2)*x^2/2! + (1+x)^9*exp(2*x*(1+x)^3)*x^3/3! + (1+x)^16*exp(2*x*(1+x)^4)*x^4/4! + (1+x)^25*exp(2*x*(1+x)^5)*x^5/5! + (1+x)^36*exp(2*x*(1+x)^6)*x^6/6! + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Programs
-
PARI
/* E.g.f.: Sum_{n>=0} ((1+x)^n + 2)^n * x^n/n! */ {a(n) = my(A = sum(m=0,n, ((1+x)^m + 2 +x*O(x^n))^m * x^m/m! )); n!*polcoeff(A,n)} for(n=0,25, print1(a(n),", "))
-
PARI
/* E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(2*x*(1+x)^n) * x^n/n! */ {a(n) = my(A = sum(m=0,n, (1+x +x*O(x^n))^(m^2) * exp(2*x*(1+x)^m +x*O(x^n)) * x^m/m! )); n!*polcoeff(A,n)} for(n=0,25, print1(a(n),", "))
Formula
E.g.f.: Sum_{n>=0} ((1+x)^n + 2)^n * x^n/n!,
E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(2*x*(1+x)^n) * x^n/n!.
a(n) = 0 (mod 3) for n > 2.
Comments