A326093 E.g.f.: Sum_{n>=0} ((1+x)^n + 3)^n * x^n/n!.
1, 4, 18, 112, 976, 11424, 169936, 3101032, 67876608, 1746757504, 52034505376, 1771434644544, 68180144988928, 2939951026982272, 140920461751138176, 7457658363325181824, 433145750643704774656, 27464893679743640343552, 1892311278990953945563648, 141074242336048184406390784, 11336870115013701213795557376
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 4*x + 18*x^2/2! + 112*x^3/3! + 976*x^4/4! + 11424*x^5/5! + 169936*x^6/6! + 3101032*x^7/7! + 67876608*x^8/8! + 1746757504*x^9/9! + 52034505376*x^10/10! + ... such that A(x) = 1 + ((1+x) + 3)*x + ((1+x)^2 + 3)^2*x^2/2! + ((1+x)^3 + 3)^3*x^3/3! + ((1+x)^4 + 3)^4*x^4/4! + ((1+x)^5 + 3)^5*x^5/5! + ((1+x)^6 + 3)^6*x^6/6! + ((1+x)^7 + 3)^7*x^7/7! + ... also A(x) = 1 + (1+x)*exp(3*x*(1+x))*x + (1+x)^4*exp(3*x*(1+x)^2)*x^2/2! + (1+x)^9*exp(3*x*(1+x)^3)*x^3/3! + (1+x)^16*exp(3*x*(1+x)^4)*x^4/4! + (1+x)^25*exp(3*x*(1+x)^5)*x^5/5! + (1+x)^36*exp(3*x*(1+x)^6)*x^6/6! + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Programs
-
PARI
/* E.g.f.: Sum_{n>=0} ((1+x)^n + 3)^n * x^n/n! */ {a(n) = my(A = sum(m=0,n, ((1+x)^m + 3 +x*O(x^n))^m * x^m/m! )); n!*polcoeff(A,n)} for(n=0,25, print1(a(n),", "))
-
PARI
/* E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(3*x*(1+x)^n) * x^n/n! */ {a(n) = my(A = sum(m=0,n, (1+x +x*O(x^n))^(m^2) * exp(3*x*(1+x)^m +x*O(x^n)) * x^m/m! )); n!*polcoeff(A,n)} for(n=0,25, print1(a(n),", "))
Formula
E.g.f.: Sum_{n>=0} ((1+x)^n + 3)^n * x^n/n!,
E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(3*x*(1+x)^n) * x^n/n!.
a(n) = 0 (mod 4) for n > 2.
Comments