A326115 Number of maximal double-free subsets of {1..n}.
1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 12, 12, 12, 12, 24, 24, 32, 32, 64, 64, 64, 64, 128, 128, 192, 192, 384, 384, 384, 384, 768, 768, 960, 960, 1920, 1920, 1920, 1920, 3840, 3840, 5760, 5760, 11520, 11520, 11520, 11520, 23040, 23040, 30720, 30720
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 6 sets: {1} {1} {13} {23} {235} {235} {2357} {13457} {134579} {2} {23} {134} {1345} {256} {2567} {13578} {135789} {1345} {13457} {14567} {145679} {1456} {14567} {15678} {156789} {23578} {235789} {25678} {256789}
Links
- Charlie Neder, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,2*#]=={}&]]],{n,0,10}]
Formula
From Charlie Neder, Jun 11 2019: (Start)
a(n) = Product {k < n/2} A000931(8+floor(log_2(n/(2k+1)))).
a(2k+1) = a(2k), a(8k+4) = a(8k+3). (End)
Extensions
a(16)-a(49) from Charlie Neder, Jun 11 2019
Comments