cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050291 Number of double-free subsets of {1, 2, ..., n}.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 288, 576, 960, 1920, 2880, 5760, 9360, 18720, 28080, 56160, 93600, 187200, 280800, 561600, 898560, 1797120, 2695680, 5391360, 8985600, 17971200, 26956800, 53913600, 87091200, 174182400, 261273600, 522547200, 870912000
Offset: 0

Views

Author

Keywords

Comments

A set is double-free if it does not contain both x and 2x.
So these are equally "half-free" subsets. - Gus Wiseman, Jul 08 2019

Examples

			From _Gus Wiseman_, Jul 08 2019: (Start)
The a(0) = 1 through a(5) = 20 double-free subsets:
  {}  {}   {}   {}     {}       {}
      {1}  {1}  {1}    {1}      {1}
           {2}  {2}    {2}      {2}
                {3}    {3}      {3}
                {1,3}  {4}      {4}
                {2,3}  {1,3}    {5}
                       {1,4}    {1,3}
                       {2,3}    {1,4}
                       {3,4}    {1,5}
                       {1,3,4}  {2,3}
                                {2,5}
                                {3,4}
                                {3,5}
                                {4,5}
                                {1,3,4}
                                {1,3,5}
                                {1,4,5}
                                {2,3,5}
                                {3,4,5}
                                {1,3,4,5}
(End)
		

References

  • Wang, E. T. H. ``On Double-Free Sets of Integers.'' Ars Combin. 28, 97-100, 1989.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, (F-> (p-> a(n-1)*F(p+3)
          /F(p+2))(padic[ordp](n, 2)))(j-> (<<0|1>, <1|1>>^j)[1, 2]))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 16 2019
  • Mathematica
    a[n_] := a[n] = (b = IntegerExponent[2n, 2]; a[n-1]*Fibonacci[b+2]/Fibonacci[b+1]); a[1]=2; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Oct 10 2012, from first formula *)
    Table[Length[Select[Subsets[Range[n]],Intersection[#,#/2]=={}&]],{n,0,10}] (* Gus Wiseman, Jul 08 2019 *)
  • PARI
    first(n)=my(v=vector(n)); v[1]=2; for(k=2,n, v[k]=v[k-1]*fibonacci(valuation(k,2)+3)/fibonacci(valuation(k,2)+2)); v \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = a(n-1)*Fibonacci(b(2n)+2)/Fibonacci(b(2n)+1), Fibonacci = A000045, b = A007814.
a(n) = 2^n - A088808(n). - Reinhard Zumkeller, Oct 19 2003

Extensions

Extended with formula by Christian G. Bower, Sep 15 1999
a(0)=1 prepended by Alois P. Heinz, Jan 16 2019

A308546 Number of double-closed subsets of {1..n}.

Original entry on oeis.org

1, 2, 3, 6, 8, 16, 24, 48, 60, 120, 180, 360, 480, 960, 1440, 2880, 3456, 6912, 10368, 20736, 27648, 55296, 82944, 165888, 207360, 414720, 622080, 1244160, 1658880, 3317760, 4976640, 9953280, 11612160, 23224320, 34836480, 69672960, 92897280
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2019

Keywords

Comments

These are subsets containing twice any element whose double is <= n.
Also the number of subsets of {1..n} containing half of every element that is even. For example, the a(6) = 24 subsets are:
{} {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} {1,2,3,4,5,6}
{3} {1,3} {1,2,4} {1,2,3,5} {1,2,3,4,6}
{5} {1,5} {1,2,5} {1,2,3,6} {1,2,3,5,6}
{3,5} {1,3,5} {1,2,4,5}
{3,6} {1,3,6} {1,3,5,6}
{3,5,6}

Examples

			The a(6) = 24 subsets:
  {}  {4}  {2,4}  {1,2,4}  {1,2,4,5}  {1,2,3,4,6}  {1,2,3,4,5,6}
      {5}  {3,6}  {2,4,5}  {1,2,4,6}  {1,2,4,5,6}
      {6}  {4,5}  {2,4,6}  {2,3,4,6}  {2,3,4,5,6}
           {4,6}  {3,4,6}  {2,4,5,6}
           {5,6}  {3,5,6}  {3,4,5,6}
                  {4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[2*#,#<=n&]]&]],{n,0,10}]

Formula

From Charlie Neder, Jun 10 2019: (Start)
a(n) = Product_{k < n/2} (2 + floor(log_2(n/(2k+1)))).
a(0) = 1, a(n) = a(n-1) * (1 + 1/A001511(n)). (End)

Extensions

a(21)-a(36) from Charlie Neder, Jun 10 2019

A045691 Number of binary words of length n with autocorrelation function 2^(n-1)+1.

Original entry on oeis.org

0, 1, 1, 3, 5, 11, 19, 41, 77, 159, 307, 625, 1231, 2481, 4921, 9883, 19689, 39455, 78751, 157661, 315015, 630337, 1260049, 2520723, 5040215, 10081661, 20160841, 40324163, 80643405, 161291731, 322573579, 645157041, 1290294393, 2580608475, 5161177495
Offset: 0

Views

Author

Torsten Sillke (torsten.sillke(AT)lhsystems.com)

Keywords

Comments

From Gus Wiseman, Jan 22 2022: (Start)
Also the number of subsets of {1..n} containing n but without adjacent elements of quotient 1/2. The Heinz numbers of these sets are a subset of the squarefree terms of A320340. For example, the a(1) = 1 through a(6) = 19 subsets are:
{1} {2} {3} {4} {5} {6}
{1,3} {1,4} {1,5} {1,6}
{2,3} {3,4} {2,5} {2,6}
{1,3,4} {3,5} {4,6}
{2,3,4} {4,5} {5,6}
{1,3,5} {1,4,6}
{1,4,5} {1,5,6}
{2,3,5} {2,5,6}
{3,4,5} {3,4,6}
{1,3,4,5} {3,5,6}
{2,3,4,5} {4,5,6}
{1,3,4,6}
{1,3,5,6}
{1,4,5,6}
{2,3,4,6}
{2,3,5,6}
{3,4,5,6}
{1,3,4,5,6}
{2,3,4,5,6}
(End)

Crossrefs

If a(n) counts subsets of {1..n} with n and without adjacent quotients 1/2:
- The version with quotients <= 1/2 is A018819, partitions A000929.
- The version with quotients < 1/2 is A040039, partitions A342098.
- The version with quotients >= 1/2 is A045690(n+1), partitions A342094.
- The version with quotients > 1/2 is A045690, partitions A342096.
- Partitions of this type are counted by A350837, ranked by A350838.
- Strict partitions of this type are counted by A350840.
- For differences instead of quotients we have A350842, strict A350844.
- Partitions not of this type are counted by A350846, ranked by A350845.
A000740 = relatively prime subsets of {1..n} containing n.
A002843 = compositions with all adjacent quotients >= 1/2.
A050291 = double-free subsets of {1..n}.
A154402 = partitions with all adjacent quotients 2.
A308546 = double-closed subsets of {1..n}, with maximum: shifted right.
A323092 = double-free integer partitions, ranked by A320340, strict A120641.
A326115 = maximal double-free subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[#[[i-1]]/#[[i]]!=1/2,{i,2,Length[#]}]&]],{n,0,15}] (* Gus Wiseman, Jan 22 2022 *)

Formula

a(2*n-1) = 2*a(2*n-2) - a(n) for n >= 2; a(2*n) = 2*a(2*n-1) + a(n) for n >= 2.

Extensions

More terms from Sean A. Irvine, Mar 18 2021
Showing 1-3 of 3 results.