cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A040039 First differences of A033485; also A033485 with terms repeated.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 13, 18, 18, 23, 23, 30, 30, 37, 37, 47, 47, 57, 57, 70, 70, 83, 83, 101, 101, 119, 119, 142, 142, 165, 165, 195, 195, 225, 225, 262, 262, 299, 299, 346, 346, 393, 393, 450, 450, 507, 507, 577, 577, 647, 647, 730, 730, 813, 813, 914, 914, 1015, 1015, 1134, 1134, 1253, 1253, 1395, 1395
Offset: 0

Views

Author

Keywords

Comments

Apparently a(n) = number of partitions (p_1, p_2, ..., p_k) of n+1, with p_1 >= p_2 >= ... >= p_k, such that for each i, p_i > p_{i+1}+...+p_k. - John McKay (mac(AT)mathstat.concordia.ca), Mar 06 2009
Comment from John McKay confirmed in paper by Bessenrodt, Olsson, and Sellers. Such partitions are called "strongly decreasing" partitions in the paper, see the function s(n) therein.
Also the number of unlabeled binary rooted trees with 2*n + 3 nodes in which the two branches directly under any given non-leaf node are either equal or at least one of them is a leaf. - Gus Wiseman, Oct 08 2018
From Gus Wiseman, Apr 06 2021: (Start)
This sequence counts both of the following essentially equivalent things:
1. Sets of distinct positive integers with maximum n + 1 in which all adjacent elements have quotients < 1/2. For example, the a(0) = 1 through a(8) = 7 subsets are:
{1} {2} {3} {4} {5} {6} {7} {8} {9}
{1,3} {1,4} {1,5} {1,6} {1,7} {1,8} {1,9}
{2,5} {2,6} {2,7} {2,8} {2,9}
{3,7} {3,8} {3,9}
{1,3,7} {1,3,8} {4,9}
{1,3,9}
{1,4,9}
2. Sets of distinct positive integers with maximum n + 1 whose first differences are term-wise greater than their decapitation (remove the maximum). For example, the set q = {1,4,9} has first differences (3,5), which are greater than (1,4), so q is counted under a(8). On the other hand, r = {1,5,9} has first differences (4,4), which are not greater than (1,5), so r is not counted under a(8).
Also the number of partitions of n + 1 into powers of 2 covering an initial interval of powers of 2. For example, the a(0) = 1 through a(8) = 7 partitions are:
1 11 21 211 221 2211 421 4211 4221
111 1111 2111 21111 2221 22211 22221
11111 111111 22111 221111 42111
211111 2111111 222111
1111111 11111111 2211111
21111111
111111111
(End)

Examples

			From _Joerg Arndt_, Dec 17 2012: (Start)
The a(19-1)=30 strongly decreasing partitions of 19 are (in lexicographic order)
[ 1]    [ 10 5 3 1 ]
[ 2]    [ 10 5 4 ]
[ 3]    [ 10 6 2 1 ]
[ 4]    [ 10 6 3 ]
[ 5]    [ 10 7 2 ]
[ 6]    [ 10 8 1 ]
[ 7]    [ 10 9 ]
[ 8]    [ 11 5 2 1 ]
[ 9]    [ 11 5 3 ]
[10]    [ 11 6 2 ]
[11]    [ 11 7 1 ]
[12]    [ 11 8 ]
[13]    [ 12 4 2 1 ]
[14]    [ 12 4 3 ]
[15]    [ 12 5 2 ]
[16]    [ 12 6 1 ]
[17]    [ 12 7 ]
[18]    [ 13 4 2 ]
[19]    [ 13 5 1 ]
[20]    [ 13 6 ]
[21]    [ 14 3 2 ]
[22]    [ 14 4 1 ]
[23]    [ 14 5 ]
[24]    [ 15 3 1 ]
[25]    [ 15 4 ]
[26]    [ 16 2 1 ]
[27]    [ 16 3 ]
[28]    [ 17 2 ]
[29]    [ 18 1 ]
[30]    [ 19 ]
The a(20-1)=30 strongly decreasing partitions of 20 are obtained by adding 1 to the first part in each partition in the list.
(End)
From _Gus Wiseman_, Oct 08 2018: (Start)
The a(-1) = 1 through a(4) = 3 semichiral binary rooted trees:
  o  (oo)  (o(oo))  ((oo)(oo))  (o((oo)(oo)))  ((o(oo))(o(oo)))
                    (o(o(oo)))  (o(o(o(oo))))  (o(o((oo)(oo))))
                                               (o(o(o(o(oo)))))
(End)
		

Crossrefs

Cf. A000123.
The equal case is A001511.
The reflected version is A045690.
The unequal (anti-run) version is A045691.
A000929 counts partitions with all adjacent parts x >= 2y.
A002843 counts compositions with all adjacent parts x <= 2y.
A018819 counts partitions into powers of 2.
A154402 counts partitions with all adjacent parts x = 2y.
A274199 counts compositions with all adjacent parts x < 2y.
A342094 counts partitions with all adjacent parts x <= 2y (strict: A342095).
A342096 counts partitions without adjacent x >= 2y (strict: A342097).
A342098 counts partitions with all adjacent parts x > 2y.
A342337 counts partitions with all adjacent parts x = y or x = 2y.

Programs

  • Maple
    # For example, the five partitions of 4, written in nonincreasing order, are
    # [1,1,1,1], [2,1,1], [2,2], [3,1], [4].
    # Only the last two satisfy the condition, and a(3)=2.
    # The Maple program below verifies this for small values of n.
    with(combinat); N:=8; a:=array(1..N); c:=array(1..N);
    for n from 1 to N do p:=partition(n); np:=nops(p); t:=0;
    for s to np do r:=p[s]; r:=sort(r,`>`); nr:=nops(r); j:=1;
    while jsum(r[k],k=j+1..nr) do j:=j+1;od; # gives A040039
    #while j= sum(r[k],k=j+1..nr) do j:=j+1;od; # gives A018819
    if j=nr then t:=t+1;fi od; a[n]:=t; od;
    # John McKay
  • Mathematica
    T[n_, m_] := T[n, m] = Sum[Binomial[n-2k-1, n-2k-m] Sum[Binomial[m, i] T[k, i], {i, 1, k}], {k, 0, (n-m)/2}] + Binomial[n-1, n-m];
    a[n_] := T[n+1, 1];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 27 2018, after Vladimir Kruchinin *)
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[#[[i-1]]/#[[i]]<1/2,{i,2,Length[#]}]&]],{n,15}] (* Gus Wiseman, Apr 06 2021 *)
  • Maxima
    T(n,m):=sum(binomial(n-2*k-1,n-2*k-m)*sum(binomial(m,i)*T(k,i),i,1,k),k,0,(n-m)/2)+binomial(n-1,n-m);
    makelist(T(n+1,1),n,0,40); /* Vladimir Kruchinin, Mar 19 2015 */
    
  • PARI
    /* compute as "A033485 with terms repeated" */
    b(n) = if(n<2, 1, b(floor(n/2))+b(n-1));  /* A033485 */
    a(n) = b(n\2+1); /* note different offsets */
    for(n=0,99, print1(a(n),", ")); /* Joerg Arndt, Jan 21 2011 */
    
  • Python
    from itertools import islice
    from collections import deque
    def A040039_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (1, 1, 2, 2)
        while True:
            a += b
            yield from (a, a)
            aqueue.append(a)
            if f: b = aqueue.popleft()
            f = not f
    A040039_list = list(islice(A040039_gen(),40)) # Chai Wah Wu, Jun 07 2022

Formula

Let T(x) be the g.f, then T(x) = 1 + x/(1-x)*T(x^2) = 1 + x/(1-x) * ( 1 + x^2/(1-x^2) * ( 1 + x^4/(1-x^4) * ( 1 + x^8/(1-x^8) *(...) ))). [Joerg Arndt, May 11 2010]
From Joerg Arndt, Oct 02 2013: (Start)
G.f.: sum(k>=1, x^(2^k-1) / prod(j=0..k-1, 1-x^(2^k) ) ) [Bessenrodt/Olsson/Sellers].
G.f.: 1/(2*x^2) * ( 1/prod(k>=0, 1 - x^(2^k) ) - (1 + x) ).
a(n) = 1/2 * A018819(n+2).
(End)
a(n) = T(n+1,1), where T(n,m)=sum(k..0,(n-m)/2, binomial(n-2*k-1,n-2*k-m)*sum(i=1..k, binomial(m,i)*T(k,i)))+binomial(n-1,n-m). - Vladimir Kruchinin, Mar 19 2015
Using offset 1: a(1) = 1; a(n even) = a(n-1); a(n odd) = a(n-1) + a((n-1)/2). - Gus Wiseman, Oct 08 2018

A350842 Number of integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 40, 54, 69, 89, 118, 146, 187, 239, 297, 372, 468, 575, 711, 880, 1075, 1314, 1610, 1947, 2359, 2864, 3438, 4135, 4973, 5936, 7090, 8466, 10044, 11922, 14144, 16698, 19704, 23249, 27306, 32071, 37639, 44019, 51457, 60113
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (211)   (41)     (51)      (52)
                    (1111)  (221)    (222)     (61)
                            (2111)   (321)     (322)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Heinz number rankings are in parentheses below.
The version for no difference 0 is A000009.
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The version for all differences > -2 is A034296, strict A001227.
The opposite version is A072670.
The version for no difference -1 is A116931 (A319630), strict A003114.
The multiplicative version is A350837 (A350838), strict A350840.
The strict case is A350844.
The complement for quotients is counted by A350846 (A350845).
A000041 = integer partitions.
A027187 = partitions of even length.
A027193 = partitions of odd length (A026424).
A323092 = double-free partitions (A320340), strict A120641.
A325534 = separable partitions (A335433).
A325535 = inseparable partitions (A335448).
A350839 = partitions with a gap and conjugate gap (A350841).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],-2]&]],{n,0,30}]

A350844 Number of strict integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 4, 4, 7, 7, 8, 11, 12, 15, 18, 21, 23, 31, 32, 40, 45, 54, 59, 73, 78, 94, 106, 122, 136, 161, 177, 203, 231, 259, 293, 334, 372, 417, 476, 525, 592, 663, 742, 821, 931, 1020, 1147, 1271, 1416, 1558, 1752, 1916, 2137, 2357, 2613, 2867
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2022

Keywords

Examples

			The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12):
  1   2   3    4   5    6     7    8     9     A      B     C
          21       32   51    43   62    54    73     65    84
                   41   321   52   71    63    82     74    93
                              61   521   72    91     83    A2
                                         81    541    92    B1
                                         432   721    A1    543
                                         621   4321   632   651
                                                      821   732
                                                            741
                                                            921
                                                            6321
		

Crossrefs

The version for no difference 0 is A000009.
The version for no difference > -2 is A001227, non-strict A034296.
The version for no difference -1 is A003114 (A325160).
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The opposite version is A072670.
The multiplicative version is A350840, non-strict A350837 (A350838).
The non-strict version is A350842.
A000041 counts integer partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length (A026424).
A116931 counts partitions with no difference -1 (A319630).
A323092 counts double-free integer partitions (A320340) strict A120641.
A325534 counts separable partitions (A335433).
A325535 counts inseparable partitions (A335448).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],0|-2]&]],{n,0,30}]

A350837 Number of integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 14, 18, 24, 31, 41, 53, 70, 87, 112, 140, 178, 221, 277, 344, 428, 526, 648, 792, 971, 1180, 1436, 1738, 2103, 2533, 3049, 3660, 4387, 5242, 6259, 7450, 8860, 10511, 12453, 14723, 17387, 20489, 24121, 28343, 33269, 38982, 45632, 53327
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2022

Keywords

Comments

The first of these partitions that is not double-free (see A323092 for definition) is (4,3,2).

Examples

			The a(1) = 1 through a(7) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (32)     (33)      (43)
                    (31)    (41)     (51)      (52)
                    (1111)  (311)    (222)     (61)
                            (11111)  (411)     (322)
                                     (3111)    (331)
                                     (111111)  (511)
                                               (4111)
                                               (31111)
                                               (1111111)
		

Crossrefs

The version with quotients >= 2 is A000929, sets A018819.
<= 2 is A342094, ranked by A342191.
< 2 is A342096, sets A045690, strict A342097.
> 2 is A342098, sets A040039.
The sets version (subsets of prescribed maximum) is A045691.
These partitions are ranked by A350838.
The strict case is A350840.
A version for differences is A350842, strict A350844.
The complement is counted by A350846, ranked by A350845.
A000041 = integer partitions.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free partitions, ranked by A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], FreeQ[Divide@@@Partition[#,2,1],2]&]],{n,0,15}]

A350838 Heinz numbers of partitions with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jan 18 2022

Keywords

Comments

Differs from A320340 in having 105: (4,3,2), 315: (4,3,2,2), 455: (6,4,3), etc.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with no adjacent prime indices of quotient 1/2.

Examples

			The terms and their prime indices begin:
      1: {}            19: {8}             38: {1,8}
      2: {1}           20: {1,1,3}         39: {2,6}
      3: {2}           22: {1,5}           40: {1,1,1,3}
      4: {1,1}         23: {9}             41: {13}
      5: {3}           25: {3,3}           43: {14}
      7: {4}           26: {1,6}           44: {1,1,5}
      8: {1,1,1}       27: {2,2,2}         45: {2,2,3}
      9: {2,2}         28: {1,1,4}         46: {1,9}
     10: {1,3}         29: {10}            47: {15}
     11: {5}           31: {11}            49: {4,4}
     13: {6}           32: {1,1,1,1,1}     50: {1,3,3}
     14: {1,4}         33: {2,5}           51: {2,7}
     15: {2,3}         34: {1,7}           52: {1,1,6}
     16: {1,1,1,1}     35: {3,4}           53: {16}
     17: {7}           37: {12}            55: {3,5}
		

Crossrefs

The version with quotients >= 2 is counted by A000929, sets A018819.
<= 2 is A342191, counted by A342094.
< 2 is counted by A342096, sets A045690.
> 2 is counted by A342098, sets A040039.
The sets version (subsets of prescribed maximum) is counted by A045691.
These partitions are counted by A350837.
The strict case is counted by A350840.
For differences instead of quotients we have A350842, strict A350844.
The complement is A350845, counted by A350846.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A003114 = strict partitions with no successions, ranked by A325160.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],And@@Table[FreeQ[Divide@@@Partition[primeptn[#],2,1],2],{i,2,PrimeOmega[#]}]&]

A350840 Number of strict integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 7, 8, 10, 13, 17, 19, 22, 25, 30, 35, 43, 52, 60, 70, 81, 93, 106, 122, 142, 166, 190, 216, 249, 287, 325, 371, 420, 479, 543, 617, 695, 784, 888, 1000, 1126, 1266, 1420, 1594, 1792, 2008, 2247, 2514, 2809, 3135, 3496, 3891, 4332
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(13) = 13 partitions (A..D = 10..13):
  1   2   3   4    5    6    7    8     9     A     B     C     D
              31   32   51   43   53    54    64    65    75    76
                   41        52   62    72    73    74    93    85
                             61   71    81    82    83    A2    94
                                  431   432   91    92    B1    A3
                                        531   532   A1    543   B2
                                              541   641   651   C1
                                                    731   732   643
                                                          741   652
                                                          831   751
                                                                832
                                                                931
                                                                5431
		

Crossrefs

The version for subsets of prescribed maximum is A045691.
The double-free case is A120641.
The non-strict case is A350837, ranked by A350838.
An additive version (differences) is A350844, non-strict A350842.
The non-strict complement is counted by A350846, ranked by A350845.
Versions for prescribed quotients:
= 2: A154402, sets A001511.
!= 2: A350840 (this sequence), sets A045691.
>= 2: A000929, sets A018819.
<= 2: A342095, non-strict A342094.
< 2: A342097, non-strict A342096, sets A045690.
> 2: A342098, sets A040039.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A003114 = strict partitions with no successions, ranked by A325160.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[#[[i-1]]/#[[i]]!=2,{i,2,Length[#]}]&]],{n,0,30}]

A350845 Heinz numbers of integer partitions with at least two adjacent parts of quotient 2.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 144, 147, 150, 156, 162, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258, 260, 264, 266, 270
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with at least two adjacent prime indices of quotient 1/2.

Examples

			The terms and corresponding partitions begin:
   6: (2,1)
  12: (2,1,1)
  18: (2,2,1)
  21: (4,2)
  24: (2,1,1,1)
  30: (3,2,1)
  36: (2,2,1,1)
  42: (4,2,1)
  48: (2,1,1,1,1)
  54: (2,2,2,1)
  60: (3,2,1,1)
  63: (4,2,2)
  65: (6,3)
  66: (5,2,1)
  72: (2,2,1,1,1)
  78: (6,2,1)
  84: (4,2,1,1)
  90: (3,2,2,1)
  96: (2,1,1,1,1,1)
		

Crossrefs

The complement is A350838, counted by A350837.
The strict complement is counted by A350840.
These partitions are counted by A350846.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A325160 ranks strict partitions with no successions, counted by A003114.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],MemberQ[Divide@@@Partition[primeptn[#],2,1],2]&]

A350846 Number of integer partitions of n with at least two adjacent parts of quotient 2.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 8, 12, 18, 25, 36, 48, 65, 89, 119, 157, 207, 269, 350, 448, 574, 729, 927, 1166, 1465, 1830, 2282, 2827, 3501, 4309, 5300, 6483, 7923, 9641, 11718, 14187, 17155, 20674, 24885, 29860, 35787, 42772, 51054, 60791, 72289, 85772, 101641
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(3) = 1 through a(9) = 12 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (521)      (621)
                       (2211)   (3211)    (3221)     (3321)
                       (21111)  (22111)   (4211)     (4221)
                                (211111)  (22211)    (5211)
                                          (32111)    (22221)
                                          (221111)   (32211)
                                          (2111111)  (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

The complement is counted by A350837, strict A350840.
The complimentary additive version is A350842, strict A350844.
These partitions are ranked by A350845, complement A350838.
A000041 = integer partitions.
A323092 = double-free integer partitions, ranked by A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Divide@@@Partition[#,2,1],2]&]],{n,0,30}]
Showing 1-8 of 8 results.