cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A381433 Heinz numbers of non section-sum partitions. Complement of A381431.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246, 252, 258
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

First differs from A364348, A364537, A350845 in not containing 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   12: {1,1,2}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   70: {1,3,4}
   72: {1,1,1,2,2}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  102: {1,2,7}
  105: {2,3,4}
  108: {1,1,2,2,2}
		

Crossrefs

Partitions of this type are counted by A351293, complement A239455.
The conjugate is A351295, union of A048767 (parts A381440, fixed A048768, A217605).
The complement is A381432, union of A381431 (conjugate A351294, parts A381436).
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],!MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]

A350842 Number of integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 40, 54, 69, 89, 118, 146, 187, 239, 297, 372, 468, 575, 711, 880, 1075, 1314, 1610, 1947, 2359, 2864, 3438, 4135, 4973, 5936, 7090, 8466, 10044, 11922, 14144, 16698, 19704, 23249, 27306, 32071, 37639, 44019, 51457, 60113
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (211)   (41)     (51)      (52)
                    (1111)  (221)    (222)     (61)
                            (2111)   (321)     (322)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Heinz number rankings are in parentheses below.
The version for no difference 0 is A000009.
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The version for all differences > -2 is A034296, strict A001227.
The opposite version is A072670.
The version for no difference -1 is A116931 (A319630), strict A003114.
The multiplicative version is A350837 (A350838), strict A350840.
The strict case is A350844.
The complement for quotients is counted by A350846 (A350845).
A000041 = integer partitions.
A027187 = partitions of even length.
A027193 = partitions of odd length (A026424).
A323092 = double-free partitions (A320340), strict A120641.
A325534 = separable partitions (A335433).
A325535 = inseparable partitions (A335448).
A350839 = partitions with a gap and conjugate gap (A350841).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],-2]&]],{n,0,30}]

A350837 Number of integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 14, 18, 24, 31, 41, 53, 70, 87, 112, 140, 178, 221, 277, 344, 428, 526, 648, 792, 971, 1180, 1436, 1738, 2103, 2533, 3049, 3660, 4387, 5242, 6259, 7450, 8860, 10511, 12453, 14723, 17387, 20489, 24121, 28343, 33269, 38982, 45632, 53327
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2022

Keywords

Comments

The first of these partitions that is not double-free (see A323092 for definition) is (4,3,2).

Examples

			The a(1) = 1 through a(7) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (32)     (33)      (43)
                    (31)    (41)     (51)      (52)
                    (1111)  (311)    (222)     (61)
                            (11111)  (411)     (322)
                                     (3111)    (331)
                                     (111111)  (511)
                                               (4111)
                                               (31111)
                                               (1111111)
		

Crossrefs

The version with quotients >= 2 is A000929, sets A018819.
<= 2 is A342094, ranked by A342191.
< 2 is A342096, sets A045690, strict A342097.
> 2 is A342098, sets A040039.
The sets version (subsets of prescribed maximum) is A045691.
These partitions are ranked by A350838.
The strict case is A350840.
A version for differences is A350842, strict A350844.
The complement is counted by A350846, ranked by A350845.
A000041 = integer partitions.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free partitions, ranked by A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], FreeQ[Divide@@@Partition[#,2,1],2]&]],{n,0,15}]

A350838 Heinz numbers of partitions with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jan 18 2022

Keywords

Comments

Differs from A320340 in having 105: (4,3,2), 315: (4,3,2,2), 455: (6,4,3), etc.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with no adjacent prime indices of quotient 1/2.

Examples

			The terms and their prime indices begin:
      1: {}            19: {8}             38: {1,8}
      2: {1}           20: {1,1,3}         39: {2,6}
      3: {2}           22: {1,5}           40: {1,1,1,3}
      4: {1,1}         23: {9}             41: {13}
      5: {3}           25: {3,3}           43: {14}
      7: {4}           26: {1,6}           44: {1,1,5}
      8: {1,1,1}       27: {2,2,2}         45: {2,2,3}
      9: {2,2}         28: {1,1,4}         46: {1,9}
     10: {1,3}         29: {10}            47: {15}
     11: {5}           31: {11}            49: {4,4}
     13: {6}           32: {1,1,1,1,1}     50: {1,3,3}
     14: {1,4}         33: {2,5}           51: {2,7}
     15: {2,3}         34: {1,7}           52: {1,1,6}
     16: {1,1,1,1}     35: {3,4}           53: {16}
     17: {7}           37: {12}            55: {3,5}
		

Crossrefs

The version with quotients >= 2 is counted by A000929, sets A018819.
<= 2 is A342191, counted by A342094.
< 2 is counted by A342096, sets A045690.
> 2 is counted by A342098, sets A040039.
The sets version (subsets of prescribed maximum) is counted by A045691.
These partitions are counted by A350837.
The strict case is counted by A350840.
For differences instead of quotients we have A350842, strict A350844.
The complement is A350845, counted by A350846.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A003114 = strict partitions with no successions, ranked by A325160.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],And@@Table[FreeQ[Divide@@@Partition[primeptn[#],2,1],2],{i,2,PrimeOmega[#]}]&]

A350840 Number of strict integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 7, 8, 10, 13, 17, 19, 22, 25, 30, 35, 43, 52, 60, 70, 81, 93, 106, 122, 142, 166, 190, 216, 249, 287, 325, 371, 420, 479, 543, 617, 695, 784, 888, 1000, 1126, 1266, 1420, 1594, 1792, 2008, 2247, 2514, 2809, 3135, 3496, 3891, 4332
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(13) = 13 partitions (A..D = 10..13):
  1   2   3   4    5    6    7    8     9     A     B     C     D
              31   32   51   43   53    54    64    65    75    76
                   41        52   62    72    73    74    93    85
                             61   71    81    82    83    A2    94
                                  431   432   91    92    B1    A3
                                        531   532   A1    543   B2
                                              541   641   651   C1
                                                    731   732   643
                                                          741   652
                                                          831   751
                                                                832
                                                                931
                                                                5431
		

Crossrefs

The version for subsets of prescribed maximum is A045691.
The double-free case is A120641.
The non-strict case is A350837, ranked by A350838.
An additive version (differences) is A350844, non-strict A350842.
The non-strict complement is counted by A350846, ranked by A350845.
Versions for prescribed quotients:
= 2: A154402, sets A001511.
!= 2: A350840 (this sequence), sets A045691.
>= 2: A000929, sets A018819.
<= 2: A342095, non-strict A342094.
< 2: A342097, non-strict A342096, sets A045690.
> 2: A342098, sets A040039.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A003114 = strict partitions with no successions, ranked by A325160.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[#[[i-1]]/#[[i]]!=2,{i,2,Length[#]}]&]],{n,0,30}]

A045691 Number of binary words of length n with autocorrelation function 2^(n-1)+1.

Original entry on oeis.org

0, 1, 1, 3, 5, 11, 19, 41, 77, 159, 307, 625, 1231, 2481, 4921, 9883, 19689, 39455, 78751, 157661, 315015, 630337, 1260049, 2520723, 5040215, 10081661, 20160841, 40324163, 80643405, 161291731, 322573579, 645157041, 1290294393, 2580608475, 5161177495
Offset: 0

Views

Author

Torsten Sillke (torsten.sillke(AT)lhsystems.com)

Keywords

Comments

From Gus Wiseman, Jan 22 2022: (Start)
Also the number of subsets of {1..n} containing n but without adjacent elements of quotient 1/2. The Heinz numbers of these sets are a subset of the squarefree terms of A320340. For example, the a(1) = 1 through a(6) = 19 subsets are:
{1} {2} {3} {4} {5} {6}
{1,3} {1,4} {1,5} {1,6}
{2,3} {3,4} {2,5} {2,6}
{1,3,4} {3,5} {4,6}
{2,3,4} {4,5} {5,6}
{1,3,5} {1,4,6}
{1,4,5} {1,5,6}
{2,3,5} {2,5,6}
{3,4,5} {3,4,6}
{1,3,4,5} {3,5,6}
{2,3,4,5} {4,5,6}
{1,3,4,6}
{1,3,5,6}
{1,4,5,6}
{2,3,4,6}
{2,3,5,6}
{3,4,5,6}
{1,3,4,5,6}
{2,3,4,5,6}
(End)

Crossrefs

If a(n) counts subsets of {1..n} with n and without adjacent quotients 1/2:
- The version with quotients <= 1/2 is A018819, partitions A000929.
- The version with quotients < 1/2 is A040039, partitions A342098.
- The version with quotients >= 1/2 is A045690(n+1), partitions A342094.
- The version with quotients > 1/2 is A045690, partitions A342096.
- Partitions of this type are counted by A350837, ranked by A350838.
- Strict partitions of this type are counted by A350840.
- For differences instead of quotients we have A350842, strict A350844.
- Partitions not of this type are counted by A350846, ranked by A350845.
A000740 = relatively prime subsets of {1..n} containing n.
A002843 = compositions with all adjacent quotients >= 1/2.
A050291 = double-free subsets of {1..n}.
A154402 = partitions with all adjacent quotients 2.
A308546 = double-closed subsets of {1..n}, with maximum: shifted right.
A323092 = double-free integer partitions, ranked by A320340, strict A120641.
A326115 = maximal double-free subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[#[[i-1]]/#[[i]]!=1/2,{i,2,Length[#]}]&]],{n,0,15}] (* Gus Wiseman, Jan 22 2022 *)

Formula

a(2*n-1) = 2*a(2*n-2) - a(n) for n >= 2; a(2*n) = 2*a(2*n-1) + a(n) for n >= 2.

Extensions

More terms from Sean A. Irvine, Mar 18 2021

A350846 Number of integer partitions of n with at least two adjacent parts of quotient 2.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 8, 12, 18, 25, 36, 48, 65, 89, 119, 157, 207, 269, 350, 448, 574, 729, 927, 1166, 1465, 1830, 2282, 2827, 3501, 4309, 5300, 6483, 7923, 9641, 11718, 14187, 17155, 20674, 24885, 29860, 35787, 42772, 51054, 60791, 72289, 85772, 101641
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(3) = 1 through a(9) = 12 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (521)      (621)
                       (2211)   (3211)    (3221)     (3321)
                       (21111)  (22111)   (4211)     (4221)
                                (211111)  (22211)    (5211)
                                          (32111)    (22221)
                                          (221111)   (32211)
                                          (2111111)  (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

The complement is counted by A350837, strict A350840.
The complimentary additive version is A350842, strict A350844.
These partitions are ranked by A350845, complement A350838.
A000041 = integer partitions.
A323092 = double-free integer partitions, ranked by A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Divide@@@Partition[#,2,1],2]&]],{n,0,30}]
Showing 1-7 of 7 results.