cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326149 Numbers whose product of prime indices is divisible by their sum of prime indices.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 49, 53, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 108, 109, 113, 125, 127, 131, 137, 139, 149, 150, 151, 154, 157, 163, 165, 167, 169, 173, 179, 181, 190, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Jun 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose product of parts is divisible by their sum of parts. The enumeration of these partitions by sum is given by A057568.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   30: {1,2,3}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
   59: {17}
		

Crossrefs

Satisfies A056239(a(n))|A003963(a(n)).
The nonprime case is A326150, with squarefree case A326158.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],Divisible[Times@@primeMS[#],Plus@@primeMS[#]]&]