cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326197 Number of divisors of n that are not reachable from n with any combination of transitions x -> gcd(x,sigma(x)) and x -> gcd(x,phi(x)).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 0, 1, 1, 2, 4, 0, 1, 1, 2, 0, 4, 0, 2, 3, 1, 0, 4, 0, 2, 1, 2, 0, 2, 1, 3, 1, 1, 0, 7, 0, 1, 2, 0, 2, 4, 0, 2, 1, 5, 0, 4, 0, 1, 3, 2, 2, 4, 0, 4, 0, 1, 0, 6, 2, 1, 1, 3, 0, 6, 1, 2, 1, 1, 1, 4, 0, 2, 3, 4, 0, 4, 0, 3, 5
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2019

Keywords

Comments

It seems that A000961 gives the positions of zeros.

Examples

			From n = 12 we can reach any of the following of its 6 divisors: 12 (with an empty combination of transitions), 4 (as A009194(12) = A009195(12) = 4), 2 (as A009195(4) = 2) and 1 (as A009194(4) = 1 = A009194(2) = A009195(2)). Only the divisors 3 and 6 of 12 are not included in the directed acyclic graph formed from those two transitions (see illustration below), thus a(12) = 2.
.
   12
    |
    4
    | \
    |  2
    | /
    1
		

Crossrefs

Programs

  • PARI
    A326196aux(n,distvals) = { distvals = setunion([n],distvals); if(1==n,distvals, my(a=gcd(n,eulerphi(n)), b=gcd(n,sigma(n))); distvals = A326196aux(a,distvals); if((a==b)||(b==n),distvals, A326196aux(b,distvals))); };
    A326196(n) = length(A326196aux(n,Set([])));
    A326197(n) = (numdiv(n) - A326196(n));

Formula

a(n) = A000005(n) - A326196(n).