A326199 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)] for all other numbers, except f(n) = 0 for odd primes.
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 23, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 32, 3, 33, 34, 35, 32, 36, 3, 37, 32, 38, 39, 40, 3, 41, 3, 42, 43, 44, 45, 46, 3, 47, 42, 46, 3, 48, 3, 49, 50, 51, 42, 52, 3, 53, 54, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 59, 66, 3, 67, 68, 69, 3, 70, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d))); A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n)); Aux326199(n) = if((n>2)&&isprime(n),0,(1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n))); v326199 = rgs_transform(vector(up_to,n,Aux326199(n))); A326199(n) = v326199[n];
Comments