A326226 Number of unlabeled n-vertex Hamiltonian digraphs (with loops).
0, 2, 3, 24, 858
Offset: 0
Examples
Non-isomorphic representatives of the a(2) = 3 digraph edge-sets: {12,21} {11,12,21} {11,12,21,22}
Links
- Wikipedia, Hamiltonian path
- Gus Wiseman, Non-isomorphic representatives of the a(3) = 24 Hamiltonian digraphs
Crossrefs
Programs
-
Mathematica
dinorm[m_]:=If[m=={},{},If[Union@@m!=Range[Max@@Flatten[m]],dinorm[m/. Apply[Rule,Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}],{1}]],First[Sort[dinorm[m,1]]]]]; dinorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#1>=aft&]}]},Union@@(dinorm[#1,aft+1]&)/@Union[Table[Map[Sort,m/. {par+aft-1->aft,aft->par+aft-1},{0}],{par,First/@Position[mx,Max[mx]]}]]]]; Table[Length[Select[Union[dinorm/@Subsets[Tuples[Range[n],2]]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,0,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 867 which is incorrect *)
Comments