A326229 Square array T(n,k) where row n >= 1 lists numbers m > 1 such that 6*m^n +- 1 are twin primes; read by falling antidiagonals.
2, 3, 5, 5, 10, 28, 7, 35, 42, 70, 10, 60, 168, 75, 2, 12, 70, 203, 80, 40, 1820, 17, 75, 287, 175, 208, 2590, 110, 18, 210, 308, 485, 425, 4795, 123, 1850, 23, 240, 518, 850, 873, 5565, 192, 3815, 2520, 25, 385, 1043, 970, 1608, 8330, 462, 5840, 5432, 220, 30, 430, 1057, 1255, 1713, 8470, 948, 6270, 6020, 560, 2023, 32
Offset: 1
Examples
The array starts: [ 2 3 5 7 10 12 17 18 ...] = A002822 \ {1} [ 5 10 35 60 70 75 210 240 ...] = A326232 \ {1} [ 28 42 168 203 287 308 518 1043 ...] = A326234 \ {1} [ 70 75 80 175 485 850 970 1255 ...] [ 2 40 208 425 873 1608 1713 1718 ...] [1820 2590 4795 5565 8330 8470 10640 10710 ...] = A326236 \ {1} [ 110 123 192 462 948 1242 1255 1747 ...] [1850 3815 5840 6270 8075 8960 9210 10420 ...] [2520 5432 6020 10535 24017 29092 29295 29967 ...] (...) Column 1 is A326230(n): smallest m > 1 such that m^n is in A002822 (twin ranks).
Links
- A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
Programs
-
PARI
A326229_row(n,LENGTH=20)={my(g=5^!(n%2)*7^!(n%3),m=max(g,2)-g); vector(LENGTH,i,while(m+=g,for(s=1,2,ispseudoprime(6*m^n+(-1)^s)||next(2));break);m)}
Comments