cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A326220 Number of non-Hamiltonian labeled n-vertex digraphs (with loops).

Original entry on oeis.org

1, 0, 12, 392, 46432, 20023232, 30595305216
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Examples

			The a(2) = 12 digraph edge-sets:
  {}  {11}  {11,12}  {11,12,22}
      {12}  {11,21}  {11,21,22}
      {21}  {11,22}
      {22}  {12,22}
            {21,22}
		

Crossrefs

The unlabeled case is A326223.
The undirected case is A326239 (with loops) or A326207 (without loops).
The case without loops is A326218.
Digraphs (with loops) containing a Hamiltonian cycle are A326204.
Digraphs (with loops) not containing a Hamiltonian path are A326213.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 46336 which is incorrect *)

Extensions

a(5)-a(6) from Bert Dobbelaere, Jun 11 2024

A326223 Number of non-Hamiltonian unlabeled n-vertex digraphs (with loops).

Original entry on oeis.org

1, 0, 7, 80, 2186
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Examples

			Non-isomorphic representatives of the a(2) = 7 digraph edge-sets:
  {}
  {11}
  {12}
  {11,12}
  {11,21}
  {11,22}
  {11,12,22}
		

Crossrefs

The labeled case is A326220.
The case without loops is A326222.
The undirected case is A246446 (without loops) or A326239 (with loops).
Hamiltonian unlabeled digraphs are A326226.
Unlabeled digraphs not containing a Hamiltonian path are A326224.

A326215 Number of Hamiltonian unlabeled n-vertex graphs with loops.

Original entry on oeis.org

0, 2, 0, 4, 20
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2019

Keywords

Comments

A graph is Hamiltonian if it contains a cycle passing through every vertex exactly once.

Examples

			Non-isomorphic representatives of the a(3) = 4 edge-sets:
  {12,13,23}
  {12,13,23,33}
  {12,13,22,23,33}
  {11,12,13,22,23,33}
		

Crossrefs

The labeled case is A326240.
The directed case is A326226 (with loops) or A326225 (without loops).
The case without loops A003216.

A326240 Number of Hamiltonian labeled n-vertex graphs with loops.

Original entry on oeis.org

0, 2, 0, 8, 160, 6976, 644992
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2019

Keywords

Comments

A graph is Hamiltonian if it contains a cycle passing through every vertex exactly once.

Examples

			The a(3) = 8 edge-sets:
  {12,13,23}  {11,12,13,23}  {11,12,13,22,23}  {11,12,13,22,23,33}
              {12,13,22,23}  {11,12,13,23,33}
              {12,13,23,33}  {12,13,22,23,33}
		

Crossrefs

The unlabeled case is A326215.
The directed case is A326204 (with loops) or A326219 (without loops).
The case without loops A326208.
Graphs with loops not containing a Hamiltonian cycle are A326239.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],OrderedQ]],FindHamiltonianCycle[Graph[Range[n],#]]!={}&]],{n,0,5}]

Formula

a(n) = A326208(n) * 2^n.
Showing 1-4 of 4 results.