cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003216 Number of Hamiltonian graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 8, 48, 383, 6196, 177083, 9305118, 883156024, 152522187830, 48322518340547
Offset: 1

Views

Author

Keywords

Comments

a(1) could also be taken to be 0, but I prefer a(1) = 1. - N. J. A. Sloane, Oct 15 2006

References

  • J. P. Dolch, Names of Hamiltonian graphs, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 259-271.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 219.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A325455 and of A325447 (for n>=3).
The labeled case is A326208.
The directed case is A326226 (with loops) or A326225 (without loops).
The case without loops is A326215.
Unlabeled simple graphs not containing a Hamiltonian cycle are A246446.
Unlabeled simple graphs containing a Hamiltonian path are A057864.

Formula

A000088(n) = a(n) + A246446(n). - Gus Wiseman, Jun 17 2019

Extensions

Extended to n=11 by Brendan McKay, Jul 15 1996
a(12) from Sean A. Irvine, Mar 17 2015
a(13) from A246446 added by Jan Goedgebeur, Sep 07 2019

A326226 Number of unlabeled n-vertex Hamiltonian digraphs (with loops).

Original entry on oeis.org

0, 2, 3, 24, 858
Offset: 0

Views

Author

Gus Wiseman, Jun 14 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Examples

			Non-isomorphic representatives of the a(2) = 3 digraph edge-sets:
  {12,21}
  {11,12,21}
  {11,12,21,22}
		

Crossrefs

The labeled case is A326204.
The case without loops is A326225.
The undirected case is A003216 (without loops) or A326215 (with loops).
Unlabeled non-Hamiltonian digraphs are A326223.
Unlabeled digraphs with a Hamiltonian path are A326221.

Programs

  • Mathematica
    dinorm[m_]:=If[m=={},{},If[Union@@m!=Range[Max@@Flatten[m]],dinorm[m/. Apply[Rule,Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}],{1}]],First[Sort[dinorm[m,1]]]]];
    dinorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#1>=aft&]}]},Union@@(dinorm[#1,aft+1]&)/@Union[Table[Map[Sort,m/. {par+aft-1->aft,aft->par+aft-1},{0}],{par,First/@Position[mx,Max[mx]]}]]]];
    Table[Length[Select[Union[dinorm/@Subsets[Tuples[Range[n],2]]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,0,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 867 which is incorrect *)

A326240 Number of Hamiltonian labeled n-vertex graphs with loops.

Original entry on oeis.org

0, 2, 0, 8, 160, 6976, 644992
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2019

Keywords

Comments

A graph is Hamiltonian if it contains a cycle passing through every vertex exactly once.

Examples

			The a(3) = 8 edge-sets:
  {12,13,23}  {11,12,13,23}  {11,12,13,22,23}  {11,12,13,22,23,33}
              {12,13,22,23}  {11,12,13,23,33}
              {12,13,23,33}  {12,13,22,23,33}
		

Crossrefs

The unlabeled case is A326215.
The directed case is A326204 (with loops) or A326219 (without loops).
The case without loops A326208.
Graphs with loops not containing a Hamiltonian cycle are A326239.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Tuples[Range[n],2],OrderedQ]],FindHamiltonianCycle[Graph[Range[n],#]]!={}&]],{n,0,5}]

Formula

a(n) = A326208(n) * 2^n.
Showing 1-3 of 3 results.