A034183 Erroneous version of A003216.
1, 0, 1, 3, 8, 48, 383, 6020
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
From _Gus Wiseman_, Jun 17 2019: (Start) Non-isomorphic representatives of the a(2) = 10 relations: {} {1->1} {1->2} {1->1, 1->2} {1->1, 2->1} {1->1, 2->2} {1->2, 2->1} {1->1, 1->2, 2->1} {1->1, 1->2, 2->2} {1->1, 1->2, 2->1, 2->2} (End)
NSeq := function ( n ) return Sum(List(ConjugacyClasses(SymmetricGroup(n)), c -> (2^Length(Orbits(Group(Representative(c)), CartesianProduct([1..n],[1..n]), OnTuples))) * Size(c)))/Factorial(n); end; # Dan Hoey, May 04 2001
Join[{1,2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n],Ordered], Permutations[Range[n^2-n+1,n^2]],2],s] /. Table[s[i]->2, {i,1,n^2-n}], {n,2,7}]] (* Geoffrey Critzer, Nov 02 2011 *) permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m]; edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v]; a[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!); Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *) dinorm[m_]:=If[m=={},{},If[Union@@m!=Range[Max@@Flatten[m]],dinorm[m/.Apply[Rule,Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}],{1}]],First[Sort[dinorm[m,1]]]]]; dinorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#1>=aft&]}]},Union@@(dinorm[#1,aft+1]&)/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0}],{par,First/@Position[mx,Max[mx]]}]]]]; Table[Length[Union[dinorm/@Subsets[Tuples[Range[n],2]]]],{n,0,3}] (* Gus Wiseman, Jun 17 2019 *)
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i])} a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
from itertools import product from math import prod, factorial, gcd from fractions import Fraction from sympy.utilities.iterables import partitions def A000595(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 02 2024
The a(2) = 4 digraph edge-sets: {12,21} {11,12,21} {12,21,22} {11,12,21,22}
Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,0,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 19200 which is incorrect *)
Non-isomorphic representatives of the a(3) = 4 digraph edge-sets: {12,23,31} {12,13,21,32} {12,13,21,23,31} {12,13,21,23,31,32}
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],FindHamiltonianPath[Graph[Range[n],#]]!={}&]],{n,0,4}] (* Mathematica 10.2+ *)
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],FindHamiltonianCycle[Graph[Range[n],#]]!={}&]],{n,0,4}] (* Mathematica 8.0+ *)
Non-isomorphic representatives of the a(2) = 3 digraph edge-sets: {12,21} {11,12,21} {11,12,21,22}
dinorm[m_]:=If[m=={},{},If[Union@@m!=Range[Max@@Flatten[m]],dinorm[m/. Apply[Rule,Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}],{1}]],First[Sort[dinorm[m,1]]]]]; dinorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#1>=aft&]}]},Union@@(dinorm[#1,aft+1]&)/@Union[Table[Map[Sort,m/. {par+aft-1->aft,aft->par+aft-1},{0}],{par,First/@Position[mx,Max[mx]]}]]]]; Table[Length[Select[Union[dinorm/@Subsets[Tuples[Range[n],2]]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,0,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 867 which is incorrect *)
Comments