cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326276 G.f.: Sum_{n>=0} (1 + (1+x)^(n+1))^n * x^n.

Original entry on oeis.org

1, 2, 6, 21, 85, 382, 1879, 9986, 56818, 343640, 2196596, 14770122, 104063085, 765661874, 5866191429, 46683934520, 385048724001, 3285146877603, 28942067342876, 262882422213165, 2458316711782337, 23637510378534754, 233423898596027454, 2364847720082290621, 24555411743247510317, 261085211212909391915
Offset: 0

Views

Author

Paul D. Hanna, Jun 28 2019

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 21*x^3 + 85*x^4 + 382*x^5 + 1879*x^6 + 9986*x^7 + 56818*x^8 + 343640*x^9 + 2196596*x^10 + ...
such that
A(x) = 1 + (1 + (1+x)^2)*x + (1 + (1+x)^3)^2*x^2 + (1 + (1+x)^4)^3*x^3 + (1 + (1+x)^5)^4*x^4 + ... + (1 + (1+x)^(n+1))^n*x^n + ...
also
A(x) = 1/(1 - x) + (1+x)^2*x/(1 - x*(1+x))^2 + (1+x)^6*x^2/(1 - x*(1+x)^2)^3 + (1+x)^12*x^3/(1 - x*(1+x)^3)^4 + ... + (1+x)^(n*(n+1))*x^n/(1 - x*(1+x)^n)^(n+1) + ...
RELATED SERIES.
Below we illustrate the following identity at specific values of x:
Sum_{n>=0} (1 + (1+x)^(n+1))^n * x^n  =  Sum_{n>=0} (1+x)^(n*(n+1)) * x^n / (1 - x*(1+x)^n)^(n+1).
(1) At x = -1/2, the following sums are equal
S1 = Sum_{n>=0} (-1)^n * (2^(n+1) + 1)^n / 2^(n*(n+2)),
S1 = Sum_{n>=0} (-1)^n * 2 / (2^(n+1) + 1)^(n+1),
where S1 = 0.58938625589631021783349702645576048800172938765646329470992...
(2) At x = -1/3, the following sums are equal
S2 = Sum_{n>=0} (-1)^n * (2^(n+1) + 3^(n+1))^n / 3^(n*(n+2)),
S2 = Sum_{n>=0} (-1)^n * 3 * 2^(n*(n+1)) / (3^(n+1) + 2^n)^(n+1),
where S2 = 0.65707817941052544107009145640756914928885409483935267126701...
(3) At x = -2/3, the following sums are equal
S3 = Sum_{n>=0} (-2)^n * (3^(n+1) + 1)^n / 3^(n*(n+2)),
S3 = Sum_{n>=0} (-2)^n * 3 / (3^(n+1) + 2)^(n+1),
where S3 = 0.55090474258125970373130850821926676214280685554645756713729...
		

Crossrefs

Cf. A301306.

Programs

  • PARI
    {a(n) = polcoeff( sum(m=0,n, (1 + (1+x)^(m+1) +x*O(x^n) )^m * x^m), n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} (1 + (1+x)^(n+1))^n * x^n.
G.f.: Sum_{n>=0} (1+x)^(n*(n+1)) * x^n / (1 - x*(1+x)^n)^(n+1).