A326277 Number of crossing normal multiset partitions of weight n.
0, 0, 0, 0, 1, 22, 314, 3711, 39947
Offset: 0
Examples
The a(5) = 22 crossing normal multiset partitions: {{1,3},{1,2,4}} {{1},{1,3},{2,4}} {{1,3},{2,2,4}} {{1},{2,4},{3,5}} {{1,3},{2,3,4}} {{2},{1,3},{2,4}} {{1,3},{2,4,4}} {{2},{1,4},{3,5}} {{1,3},{2,4,5}} {{3},{1,3},{2,4}} {{1,4},{2,3,5}} {{3},{1,4},{2,5}} {{2,4},{1,1,3}} {{4},{1,3},{2,4}} {{2,4},{1,2,3}} {{4},{1,3},{2,5}} {{2,4},{1,3,3}} {{5},{1,3},{2,4}} {{2,4},{1,3,4}} {{2,4},{1,3,5}} {{2,5},{1,3,4}} {{3,5},{1,2,4}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
Comments