cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326290 Number of non-crossing n-vertex graphs with loops.

Original entry on oeis.org

1, 2, 8, 64, 768, 11264, 184320, 3227648, 59179008, 1121714176, 21803040768, 432218832896, 8705009516544, 177618573852672, 3663840373899264, 76277945940836352, 1600706475536154624, 33823752545680490496, 719051629204296695808, 15368152475218787434496
Offset: 0

Views

Author

Gus Wiseman, Sep 12 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b.

Examples

			The a(0) = 1 through a(2) = 8 non-crossing edge sets with loops:
  {}  {}    {}
      {11}  {11}
            {12}
            {22}
            {11,12}
            {11,22}
            {12,22}
            {11,12,22}
		

Crossrefs

Crossing and nesting simple graphs are (both) A326210, while non-crossing, non-nesting simple graphs are A326244.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x
    				
  • PARI
    seq(n)=Vec(1+3*x-4*x^2 -x*sqrt(1-24*x+16*x^2 + O(x^n))) \\ Andrew Howroyd, Sep 14 2019

Formula

From Andrew Howroyd, Sep 14 2019: (Start)
a(n) = 2^n * A054726(n).
G.f.: 1 + 3*x - 4*x^2 - x*sqrt(1 - 24*x + 16*x^2). (End)

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 14 2019