A326290 Number of non-crossing n-vertex graphs with loops.
1, 2, 8, 64, 768, 11264, 184320, 3227648, 59179008, 1121714176, 21803040768, 432218832896, 8705009516544, 177618573852672, 3663840373899264, 76277945940836352, 1600706475536154624, 33823752545680490496, 719051629204296695808, 15368152475218787434496
Offset: 0
Keywords
Examples
The a(0) = 1 through a(2) = 8 non-crossing edge sets with loops: {} {} {} {11} {11} {12} {22} {11,12} {11,22} {12,22} {11,12,22}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x
-
PARI
seq(n)=Vec(1+3*x-4*x^2 -x*sqrt(1-24*x+16*x^2 + O(x^n))) \\ Andrew Howroyd, Sep 14 2019
Formula
From Andrew Howroyd, Sep 14 2019: (Start)
a(n) = 2^n * A054726(n).
G.f.: 1 + 3*x - 4*x^2 - x*sqrt(1 - 24*x + 16*x^2). (End)
Extensions
Terms a(6) and beyond from Andrew Howroyd, Sep 14 2019
Comments