cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377584 E.g.f.: exp(Sum_{k>=1} A326305(k) * x^k/k).

Original entry on oeis.org

1, 1, 1, 5, 23, 167, 907, 8647, 84625, 840401, 8917289, 122748749, 1753750759, 26047588855, 401961006787, 6422475692063, 124830139084193, 2445151343123873, 48495757104590545, 1038849234759346069, 23966120552360409271, 545230613480963786951, 13288745250263697838331
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 02 2024

Keywords

Crossrefs

Cf. A326305.

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Sum[If[OddQ[k], EulerPhi[k], EulerPhi[k] - EulerPhi[k/2]]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ sqrt(3) * exp(3*sqrt(2*n)/Pi - n) * n^(n - 1/4) / (2^(3/4) * sqrt(Pi)).

A348045 Möbius transform of A252463, where A252463 shifts the prime factorization of odd numbers one step towards smaller primes and divides even numbers by two.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 2, 2, 2, 6, 2, 10, 2, 2, 4, 12, 4, 16, 4, 4, 4, 18, 4, 6, 2, 4, 6, 22, 6, 28, 8, 6, 4, 8, 6, 30, 2, 10, 8, 36, 8, 40, 10, 4, 4, 42, 8, 20, 14, 12, 12, 46, 14, 12, 12, 16, 6, 52, 8, 58, 2, 8, 16, 20, 14, 60, 16, 18, 16, 66, 12, 70, 6, 6, 18, 24, 14, 72, 16, 8, 4, 78, 12, 24, 2, 22, 20, 82, 20
Offset: 1

Views

Author

Antti Karttunen, Oct 12 2021

Keywords

Crossrefs

Cf. A008683, A064989, A252463, A285702 (odd bisection), A348046 (positions of 2's).
Cf. also A023022, A326305, A347115.

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A348045(n) = sumdiv(n,d,moebius(n/d)*A252463(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A252463(d).

A334087 Draw the lines with equations y=kx (k=1..n) on the R^2/Z^2 square flat torus. a(n) is the number of intersection points.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 17, 25, 39, 55, 77, 99, 131, 165, 211, 257, 311, 369, 443, 517, 609, 705, 813, 921, 1051, 1185, 1339, 1493, 1665, 1843, 2049, 2255, 2491, 2735, 2999, 3263, 3551, 3845, 4175, 4505, 4859, 5221, 5623, 6025, 6469, 6923, 7401, 7879, 8403, 8935, 9509
Offset: 0

Views

Author

Luc Rousseau, Apr 15 2020

Keywords

Comments

It appears that the second differences of this sequence yield A326305.

Crossrefs

Cf. A326305.

Programs

  • PARI
    f(i,j,c,d)=my(L=List(),x,y);x=(d-c)/(j-i);if(max(c/i,d/j)<=x&&x1)+#h(n)
    for(n=0,60,print1(a(n), ", "))
Showing 1-3 of 3 results.