cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326324 a(n) = A_{5}(n) where A_{m}(x) are the Eulerian polynomials as defined in A326323.

Original entry on oeis.org

1, 1, 6, 46, 456, 5656, 84336, 1467376, 29175936, 652606336, 16219458816, 443419545856, 13224580002816, 427278468668416, 14867050125981696, 554245056343668736, 22039796215883268096, 931198483176870608896, 41658202699736550014976, 1967160945260218035798016
Offset: 0

Views

Author

Peter Luschny, Jun 27 2019

Keywords

Comments

See A326323 for the more general formulas.

Crossrefs

Programs

  • Maple
    seq(add(combinat:-eulerian1(n,k)*5^k, k=0..n), n=0..20);
    # Alternative:
    egf := 4/(5 - exp(4*x)): ser := series(egf, x, 21):
    seq(k!*coeff(ser, x, k), k=0..20);
  • Mathematica
    a[1] := 1; a[n_] := 4^(n + 1)/5 HurwitzLerchPhi[1/5, -n, 0];
    Table[a[n], {n, 0, 20}]
    (* Alternative: *)
    s[n_] := Sum[StirlingS2[n, j] 4^(n - j) j!, {j, 0, n}];
    Table[s[n], {n, 0, 20}]

Formula

a(n) ~ n!/5 * (4/log(5))^(n+1). - Vaclav Kotesovec, Aug 09 2021
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * 4^(k-1) * a(n-k). - Ilya Gutkovskiy, Feb 04 2022

Extensions

Corrected after notice from Jean-François Alcover by Peter Luschny, Jul 13 2019