cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326334 Number of sortable factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 4, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 4, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 8, 1, 2, 4, 11, 2, 4, 1, 4, 2, 4, 1, 14, 1, 2, 4, 4, 2, 4, 1, 12, 5, 2, 1, 8, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

A factorization into factors > 1 is sortable if there is a permutation (c_1,...,c_k) of the factors such that the maximum prime factor (in the standard factorization of an integer into prime numbers) of c_i is at most the minimum prime factor of c_{i+1}. For example, the factorization (6*8*27) is sortable because the permutation (8,6,27) satisfies the condition.

Examples

			The a(180) = 16 sortable factorizations:
  (2*2*3*3*5)  (2*2*5*9)   (4*5*9)   (2*90)   (180)
               (2*3*5*6)   (2*2*45)  (4*45)
               (3*3*4*5)   (2*5*18)  (5*36)
               (2*2*3*15)  (2*6*15)  (12*15)
                           (3*4*15)
                           (3*5*12)
Missing from this list are the following unsortable factorizations:
  (2*3*3*10)  (5*6*6)   (3*60)
              (2*3*30)  (6*30)
              (2*9*10)  (9*20)
              (3*3*20)  (10*18)
              (3*6*10)
		

Crossrefs

Factorizations are A001055.
Unsortable factorizations are A326291.
Sortable integer partitions are A326333.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,100}]

Formula

A001055(n) = a(n) + A326291(n).