cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355030 a(n) is the number of possible values of the number of prime divisors (counted with multiplicity) of numbers with n divisors.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 11, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 14, 1, 2, 4, 4, 2, 5, 1, 11, 5, 2, 1, 11, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2022

Keywords

Comments

First differs from A305254 at n = 40, from A001055 and A252665 at n = 36, from A218320 at n = 32 and from A317791, A318559 and A326334 at n = 30.

Examples

			a(2) = 1 since numbers with 2 divisors are primes, i.e., numbers k with the single value Omega(k) = 1.
a(4) = 2 since numbers with 4 divisors are either of the following 2 forms: p1 * p2 with p1 and p2 being distinct primes, or of the form p^3 with p prime.
a(8) = 3 since numbers with 8 divisors are either of the following 3 forms: p1 * p2 * p3 with p1, p2 and p3 being distinct primes, p1 * p2^3, or p1^7.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Total[#-1]& /@ f[n]]], {n, 1, 100}] (* using the function f by T. D. Noe at A162247 *)

Formula

a(n) <= A001055(n).
a(p) = 1 for p prime.
a(A355031(n)) = n.

A326333 Number of integer partitions of n with sortable prime factors.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 99, 132, 171, 222, 283, 363, 457, 577, 721, 902, 1115, 1379, 1693, 2076, 2530, 3077, 3723, 4500, 5410, 6494, 7765, 9270, 11025, 13089, 15491, 18307, 21569, 25369, 29765, 34869, 40750, 47546, 55361, 64367, 74685, 86529
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

An integer partition has sortable prime factors if there is a permutation (c_1,...,c_k) of the parts such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the partition (27,8,6) is sortable because the permutation (8,6,27) satisfies the condition.

Crossrefs

Unsortable integer partitions are A326332.
Sortable normal multiset partitions are A326212.
Sortable factorizations are A326334.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,0,20}]

Formula

A000041(n) = a(n) + A326332(n).
Showing 1-2 of 2 results.