cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A326332 Number of integer partitions of n with unsortable prime factors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 5, 9, 14, 22, 33, 50, 71, 100, 140, 196, 265, 360, 480, 641, 842, 1104, 1432, 1855, 2378, 3040, 3858, 4888, 6146, 7708, 9616, 11969, 14818, 18305, 22511, 27629, 33773, 41191, 50069, 60744, 73453, 88645, 106681
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

An integer partition has unsortable prime factors if there is no permutation (c_1,...,c_k) of the parts such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the partition (27,8,6) is sortable because the permutation (8,6,27) satisfies the condition.

Examples

			The a(12) = 1 through a(17) = 14 partitions:
  (6,6)  (10,3)   (6,6,2)    (6,6,3)      (10,6)         (14,3)
         (6,6,1)  (10,3,1)   (10,3,2)     (6,6,4)        (6,6,5)
                  (6,6,1,1)  (6,6,2,1)    (10,3,3)       (10,4,3)
                             (10,3,1,1)   (6,6,2,2)      (10,6,1)
                             (6,6,1,1,1)  (6,6,3,1)      (6,6,3,2)
                                          (10,3,2,1)     (6,6,4,1)
                                          (6,6,2,1,1)    (10,3,2,2)
                                          (10,3,1,1,1)   (10,3,3,1)
                                          (6,6,1,1,1,1)  (6,6,2,2,1)
                                                         (6,6,3,1,1)
                                                         (10,3,2,1,1)
                                                         (6,6,2,1,1,1)
                                                         (10,3,1,1,1,1)
                                                         (6,6,1,1,1,1,1)
		

Crossrefs

Sortable integer partitions are A326333.
Unsortable set partitions are A058681.
Unsortable normal multiset partitions are A326211.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,0,20}]

Formula

A000041(n) = a(n) + A326333(n).

A326334 Number of sortable factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 4, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 4, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 8, 1, 2, 4, 11, 2, 4, 1, 4, 2, 4, 1, 14, 1, 2, 4, 4, 2, 4, 1, 12, 5, 2, 1, 8, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

A factorization into factors > 1 is sortable if there is a permutation (c_1,...,c_k) of the factors such that the maximum prime factor (in the standard factorization of an integer into prime numbers) of c_i is at most the minimum prime factor of c_{i+1}. For example, the factorization (6*8*27) is sortable because the permutation (8,6,27) satisfies the condition.

Examples

			The a(180) = 16 sortable factorizations:
  (2*2*3*3*5)  (2*2*5*9)   (4*5*9)   (2*90)   (180)
               (2*3*5*6)   (2*2*45)  (4*45)
               (3*3*4*5)   (2*5*18)  (5*36)
               (2*2*3*15)  (2*6*15)  (12*15)
                           (3*4*15)
                           (3*5*12)
Missing from this list are the following unsortable factorizations:
  (2*3*3*10)  (5*6*6)   (3*60)
              (2*3*30)  (6*30)
              (2*9*10)  (9*20)
              (3*3*20)  (10*18)
              (3*6*10)
		

Crossrefs

Factorizations are A001055.
Unsortable factorizations are A326291.
Sortable integer partitions are A326333.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,100}]

Formula

A001055(n) = a(n) + A326291(n).
Showing 1-2 of 2 results.