A326360 Number of maximal antichains of nonempty, non-singleton subsets of {1..n}.
1, 1, 1, 2, 13, 279, 29820, 123590767
Offset: 0
Examples
The a(1) = 1 through a(4) = 13 maximal antichains: {} {12} {123} {1234} {12}{13}{23} {12}{134}{234} {13}{124}{234} {14}{123}{234} {23}{124}{134} {24}{123}{134} {34}{123}{124} {12}{13}{14}{234} {12}{23}{24}{134} {13}{23}{34}{124} {14}{24}{34}{123} {123}{124}{134}{234} {12}{13}{14}{23}{24}{34}
Links
- Dmitry I. Ignatov, On the Number of Maximal Antichains in Boolean Lattices for n up to 7. Lobachevskii J. Math., 44 (2023), 137-146.
- Dmitry I. Ignatov, Supporting iPython code and input files for a(7) based on inequivalent maximal antichains for n=7 and related sequences, Github repository, section 3
- Dmitry I. Ignatov, PDF version of the supporting iPython notebook for a(7)
- Dmitry I. Ignatov, Supporting iPython notebook for a(7): A326360.ipynb
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[stableSets[Subsets[Range[n],{2,n}],SubsetQ]]],{n,0,4}]
-
Python
# see Ignatov links # Dmitry I. Ignatov, Oct 14 2021
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A326359(k) for n >= 2. - Andrew Howroyd, Nov 19 2021
Extensions
a(6) from Andrew Howroyd, Aug 14 2019
a(7) from Dmitry I. Ignatov, Oct 14 2021
Comments