A326363 Number of maximal intersecting antichains of subsets of {1..n}.
1, 2, 4, 6, 21, 169, 11749, 12160648
Offset: 0
Examples
The a(1) = 1 through a(4) = 21 maximal intersecting antichains: {} {} {} {} {1} {1} {1} {1} {2} {2} {2} {12} {3} {3} {123} {4} {12}{13}{23} {1234} {12}{13}{23} {12}{14}{24} {13}{14}{34} {23}{24}{34} {12}{134}{234} {13}{124}{234} {14}{123}{234} {23}{124}{134} {24}{123}{134} {34}{123}{124} {12}{13}{14}{234} {12}{23}{24}{134} {13}{23}{34}{124} {14}{24}{34}{123} {123}{124}{134}{234}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[stableSets[Subsets[Range[n],{0,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}] (* 2nd program *) n = 2^6; g = CompleteGraph[n]; i = 0; While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]]; sets = FindClique[g, Infinity, All]; Length[sets] (* Elijah Beregovsky, May 06 2020 *)
Extensions
a(7) from Elijah Beregovsky, May 06 2020
Comments