A326366 Number of intersecting antichains of nonempty subsets of {1..n} with empty intersection (meaning there is no vertex in common to all the edges).
1, 1, 1, 2, 28, 1960, 1379273, 229755337549, 423295079757497714059
Offset: 0
Examples
The a(0) = 1 through a(4) = 28 intersecting antichains with empty intersection: {} {} {} {} {} {{12}{13}{23}} {{12}{13}{23}} {{12}{14}{24}} {{13}{14}{34}} {{23}{24}{34}} {{12}{13}{234}} {{12}{14}{234}} {{12}{23}{134}} {{12}{24}{134}} {{13}{14}{234}} {{13}{23}{124}} {{13}{34}{124}} {{14}{24}{123}} {{14}{34}{123}} {{23}{24}{134}} {{23}{34}{124}} {{24}{34}{123}} {{12}{134}{234}} {{13}{124}{234}} {{14}{123}{234}} {{23}{124}{134}} {{24}{123}{134}} {{34}{123}{124}} {{12}{13}{14}{234}} {{12}{23}{24}{134}} {{13}{23}{34}{124}} {{14}{24}{34}{123}} {{123}{124}{134}{234}}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],#=={}||Intersection@@#=={}&]],{n,0,4}]
Formula
a(n) = A326375(n) - 1.
Extensions
a(7)-a(8) from Andrew Howroyd, Aug 14 2019
Comments