cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326369 Number of tilings of an equilateral triangle of side length n with unit triangles (of side length 1) and exactly four unit "lozenges" or "diamonds" (also of side length 1).

Original entry on oeis.org

0, 0, 0, 762, 12699, 90270, 417435, 1478160, 4354497, 11203269, 25970895, 55414395, 110505120, 208300257, 374375664, 645922095, 1075615380, 1736379630, 2727171042, 4179918384, 6267764745, 9214763640, 13307191065, 18906643602, 26465101179, 36542141595, 49824502425
Offset: 1

Views

Author

Greg Dresden, Jul 01 2019

Keywords

Examples

			We can represent a unit triangle this way:
       o
      / \
     o - o
and a unit "lozenge" or "diamond" has these three orientations:
     o
    / \          o - o            o - o
   o   o  and   /   /   and also   \   \
    \ /        o - o                o - o
     o
and for n=4, here is one of the 762 different tiling of the triangle of side length 4 with exactly four lozenges:
            o
           / \
          o - o
         / \ / \
        o - o   o
       /   / \ / \
      o - o - o - o
     /   / \ / \   \
    o - o - o - o - o
		

Crossrefs

Cf. A326367, A326368. Column 4 of A273464.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[3 x^4*(254 + 1947 x + 1137 x^2 - 613 x^3 + 87 x^4 + 33 x^5 - 10 x^6)/(1 - x)^9, {x, 0, 27}], x] (* Michael De Vlieger, Jul 07 2019 *)
  • PARI
    concat([0,0,0], Vec(3*x^4*(254 + 1947*x + 1137*x^2 - 613*x^3 + 87*x^4 + 33*x^5 - 10*x^6) / (1 - x)^9 + O(x^40))) \\ Colin Barker, Jul 01 2019

Formula

a(n) = (3/128)*(n-3)*(n-2)*(9*n^6 + 9*n^5 - 135*n^4 - 81*n^3 + 670*n^2 + 104*n - 1216) for n >= 2 (proved by Greg Dresden and Eldin Sijaric).
From Colin Barker, Jul 01 2019: (Start)
G.f.: 3*x^4*(254 + 1947*x + 1137*x^2 - 613*x^3 + 87*x^4 + 33*x^5 - 10*x^6) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.
a(n) = (3/128)*(-7296 + 6704*n + 2284*n^2 - 3732*n^3 + 265*n^4 + 648*n^5 - 126*n^6 - 36*n^7 + 9*n^8) for n>1.
(End)